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Abstract

This paper studies information transmission in a two-sender, multidimensional cheap

talk setting where there are exogenous restrictions on the feasible set of policies for the

receiver. Such restrictions, which are present in most applications, can, by limiting the

punishments available to the receiver, prevent the existence of fully revealing equilibria

(FRE). We focus on FRE that are i) robust to small mistakes by the senders, in that small

differences between the senders’ messages result in only small punishments by the receiver,

and ii) independent of the magnitudes of the senders’ bias vectors. For convex policy spaces

in an arbitrary number of dimensions, we prove that if there exists a FRE satisfying property

ii), then there exists one satisfying both i) and ii). Thus the requirement of robustness is,

under these assumptions, not restrictive. For convex policy spaces in two dimensions, we

provide a simple geometric condition, the Local Deterrence Condition, on the directions of

the senders’ biases relative to the frontier of the policy space, that is necessary and sufficient

for the existence of a FRE satisfying i) and ii). We also provide a specific policy rule, the

Min Rule, for the receiver that supports a FRE satisfying i) and ii) whenever one exists.

The Min Rule is the anonymous rule that punishes incompatible reports in the least severe

way, subject to maintaining the senders’ incentives for truthtelling, no matter how large

their biases. We characterize necessary and sufficient conditions for collusion-proofness of

a FRE supported by the receiver using the Min Rule and show that if such a FRE is not

collusion-proof, then no other FRE satisfying ii) can be collusion-proof. We extend our

existence results to convex policy spaces in more than two dimensions and to non-convex

two-dimensional spaces. Finally, our necessary and sufficient condition, as well as our

specific policy rule, can be easily adapted if the receiver is uncertain about the directions of

the biases and/or if the biases vary with the state of the world.
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1 Introduction

In sender-receiver games with cheap talk, the decision-maker (receiver) has imperfect infor-

mation about the consequences of a policy and elicits reports from better-informed experts

(the senders), whose preferences are not perfectly aligned with those of the decision-maker

(i.e. the experts are “biased”). The advice transmitted by the senders is costless but unveri-

fiable (hence, “cheap talk”), and the receiver cannot commit himself in advance to how he

will respond to the senders’ advice.1 Cheap talk games with two biased experts have been

used, for example, in organizational economics to analyze the interaction between a CEO

and division managers, and in political science to study the transmission of information

from legislative committees to the legislature as a whole.2 In both of these contexts, as

well as in most other settings to which cheap-talk models have been applied, the receiver

typically faces constraints on the feasible set of policies—these may stem from limited

budgets, from physical restrictions on what is possible (within a given time frame), or from

legal constraints.

In this paper, we analyze a two-sender cheap-talk model in which the senders observe

common information that is unavailable to the receiver and the receiver faces exogenous

restrictions on the feasible set of policies. When the receiver can consult two equally in-

formed senders, the receiver has the potential to extract all information from the senders, by

comparing the senders’ messages and punishing any discrepancy between them. However,

the exogenous restrictions on the feasible set of policies can, by limiting the set of possible

responses by the receiver to incompatible reports by the senders, prevent the existence of

fully revealing equilibria. Our objective is to provide simple geometric conditions, on the

shape of the feasible set of policies relative to the directions of the senders’ bias vectors, that

are necessary and sufficient for the existence of equilibria that are not only fully revealing

but have additional desirable properties.

The first such desirable property of a fully revealing equilibrium (FRE) is robustness to

small mistakes by the senders. Even if the commonly informed senders attempt to report

truthfully to the receiver, noise in the communication process might result in the receiver re-

ceiving incompatible messages. Yet if the discrepancy between the incompatible messages

is small, it is reasonable to think that the receiver would wish to respond by choosing a pol-

icy that is close to each of the messages. We formulate a natural and analytically tractable

definition of robustness of an equilibrium to small mistakes that explicitly requires that

small differences between the senders’ messages should result in only small adjustments in

the receiver’s response, or, phrased differently, in only small punishments by the receiver.

In our model, the receiver and the senders all have quadratic utility functions, and sender

i’s ideal point differs from the receiver’s by a vector, bi, sender i’s bias vector.3 The second

desirable property of the FRE’s that we seek is independence of the magnitudes of the

1For the seminal paper in this literature see Crawford and Sobel (1982).
2For the former application, see Alonso and Matouschek (2008) and for the latter, Gilligan and Krehbiel (1989)

and Krishna and Morgan (2001a;b)
3In Section 5 we sketch how our results can be extended to general quasi-concave preferences.
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senders’ biases. In many settings the receiver will know the direction of the divergence in

interests between himself and each of the senders but will be less certain of the intensity

of each of these divergences. We seek fully revealing equilibria such that the same set of

strategies remain a FRE no matter how large the magnitudes of the senders’ biases. Besides

being invariant to the intensity of senders’ preferences, such equilibria are also appealing

because of the relative tractability of their characterization.

We begin by focusing on convex policy spaces in an arbitrary number of dimensions.

We prove in Proposition 3 that whenever there exists a fully revealing equilibrium that

is independent of the magnitudes of the biases, there also exists a robust FRE that is in-

dependent of these magnitudes. In other words, when biases can be arbitrarily large, if

small deviations cannot be deterred with small punishments, then they cannot be deterred

with any feasible punishments. Moreover, we show that for convex policy spaces that are

two-dimensional or multidimensional and compact, it is sufficient for existence of a FRE

(robust or not) that small deviations can be deterred with small punishments. These re-

sults are extremely useful, because they show that a) robustness is, perhaps surprisingly,

not a restrictive requirement on a FRE that is independent of the bias magnitudes; and b)

in the two-dimensional or compact multidimensional cases, we need only ensure that local

deviations can be punished.

Section 3.1 then focuses on the case where the policy space is a convex subset of R2.

Proposition 4 identifies a simple geometric condition, the Local Deterrence Condition, on

the directions of the senders’ bias vectors relative to the frontier of the policy space, that

is necessary and sufficient for all small deviations to be deterrable with small punishments,

and hence, given Proposition 3, for the existence of a FRE (robust or not) that is independent

of the magnitudes of the biases. The proposition also provides a specific policy rule for the

receiver, the Min Rule, that supports a robust FRE whenever one exists. To describe this

rule, observe that as the senders’ biases become arbitrarily large, their indifference curves

approach hyperplanes. Using the coordinate system defined by these limiting preferences of

the senders, the Min Rule specifies that, given any two reported states, the receiver chooses

the component-wise minimum of these reports. The Min Rule is anonymous in that it

selects the same policy in response to a pair of incompatible reports no matter which sender

sent which report. This rule is the anonymous rule that punishes incompatible reports in the

least severe way, subject to deterring the senders from misreporting, no matter how large

their biases. If the Min Rule is feasible, it deters deviations from truthful reporting in a

manner robust to small mistakes. Proposition 4 shows that the Min Rule is feasible, for all

pairs of reports, if and only if the Local Deterrence Condition is satisfied, or in other words,

if and only if a (robust) FRE exists.

For convex policy spaces in two dimensions, we also prove that the Local Deterrence

Condition remains necessary and sufficient for existence of a FRE that is robust even when

the biases have known finite sizes. This is true because, when the receiver is constrained to

use small punishments, it is only the orientations, not the magnitudes, of the senders’ bias

vectors that determine whether or not they have incentives to deviate from truthtelling.

Since the senders have common information and could attempt to mislead the receiver
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by both making the same false report, another desirable property of a FRE is collusion-

proofness. We will say that a FRE is collusion-proof if, whenever there is a feasible policy

that both senders prefer to the one the receiver would choose if they were truthful, collusion

on this preferred policy would not be sefl-enforcing, because one of the senders would find

it profitable to unilaterally deviate. In Section 3.1.1, we show that the Min Rule is the best

punishment rule the receiver could use in order to prevent collusion. Specifically, we show

that if a FRE supported by the receiver using the Min Rule is not collusion-proof, then no

other FRE that is independent of the magnitudes of the biases can be collusion-proof. The

intuition for this result is that the Min Rule prescribes the least severe punishment subject to

maintaining the senders’ incentives, and hence it makes deviations from the collusive report

most attractive. We then characterize necessary and sufficient conditions for collusion-

proofness of a FRE supported by the Min Rule. We also highlight that the benefits of the

Min Rule in deterring collusion, and the necessary and sufficient conditions for it to do so,

extend to a setting with more than two senders; the key is to define the Min Rule and the

conditions in terms of the bias vectors for the pair of senders whose preferences are least

closely aligned.

To illustrate these results, suppose that the receiver is an executive who has to allo-

cate funds from a budget to two different projects, each one overseen by a manager. The

maximum amount of funds that can be allocated is exogenously fixed, and each project

must receive a non-negative level of funding. The managers (senders) have common infor-

mation about the returns to the two projects, and hence about which feasible allocation of

funds to each project the receiver would prefer, if he had access to the senders’ information.

Whatever the best allocation of funds for the receiver (whether or not it exhausts the whole

budget), each sender would prefer that a strictly higher level of funding be allocated to the

project he oversees. Figure 1 illustrates the receiver’s feasible set of policies (allocations of

funds) and the directions of the senders’ bias vectors.

Funds allocated
to project 1

Funds allocated
to project 2

b1

b2
θ′′

θ′

y(θ′, θ′′)

Figure 1: Allocation of funds given a budget constraint. The shaded area represents the
feasible allocations. Given a pair of reports (θ′, θ′′), the Min Rule implements y(θ′, θ′′) =

(min{θ′1, θ
′′
1 },min{θ′2, θ

′′
2 }).

Since the policy space is convex, Proposition 3 implies that a robust FRE independent of
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the magnitudes of the biases exists whenever a FRE independent of these magnitudes does.

Moreover, since the policy space is also a subset of R2, to prove existence it is enough

to check whether all small deviations can be deterred with small punishments. This is

precisely what the Local Deterrence Condition establishes. Since the frontier of the policy

space here has only three distinct orientations, it is easy to confirm that this condition

is satisfied in this setting.4 Proposition 4 provides a way to construct a robust FRE that

is independent of the biases’ magnitudes: the receiver uses the Min Rule to respond to

any pair of incompatible reports. For the orthogonal bias directions shown, the Min Rule

specifies that the receiver chooses the component-wise minimum of the senders’ reports

with respect to the Euclidean coordinates.5 It is clear from Figure 1 that the allocation

specified by the Min Rule is feasible in this setting for all pairs of reported allocations, and

this rule implements a robust FRE that is independent of the magnitudes of the biases.

Furthermore, in this setting, Proposition 7 implies that the robust FRE supported by the

Min Rule is, whatever the magnitudes of the biases, collusion-proof: Given any plan by

the senders to make a common false report overstating the amount of funding the receiver

should allocate to both projects, the divergence in bias directions between the two senders

means that each of them could gain by unilaterally deviating from the collusive plan.

In Section 3.2, we extend our results to convex policy spaces of any dimension larger

than two. The key observation here is that the only directions of conflict between the

senders and the receiver are the ones in the (two-dimensional) plane spanned by the senders’

bias vectors. Proposition 8 shows that, for existence of a FRE (robust or not) that is indepen-

dent of the magnitudes of the biases, it is necessary and sufficient to look at the projection

of the policy space onto the subspace of conflict of interest and see whether a FRE can be

constructed there. The reason is that, when the magnitudes of the biases can be arbitrarily

large, no given shift of the receiver’s action in a direction orthogonal to the plane of the

biases can be certain to serve as a punishment for a deviating sender. Therefore, in re-

sponse to incompatible reports, the receiver must choose as a punishment an action whose

projection onto the plane of the biases is worse for both senders. Such an action exists if

and only if the projection of the policy space onto the plane of the biases satisfies the Local

Deterrence Condition identified in Proposition 4 for the two-dimensional case.

Since increasing returns or indivisibilities may cause the set of feasible policies for

the receiver to be non-convex, it is important to examine when a robust FRE exists for

non-convex policy spaces. This we do in Section 4. We identify an additional geometric

condition, the Global Deterrence Condition, on the directions of the senders’ biases relative

to the frontier of the convex hull of the policy space, that together with the Local Deterrence

Condition identified in Proposition 4, is necessary and sufficient for existence of a robust

FRE that is independent of the magnitudes of the biases. The Local Deterrence Condition

is necessary and sufficient for small deviations to be deterrable with small punishments,

but for non-convex policy spaces, this is not sufficient for existence of a robust FRE: large

4Sections 3.1 and 3.1.1, in particular Figures 9a and 10b, provide more details for this example.
5That is, if Sender 1 reports that the receiver’s optimal allocation of funds to project 1 is θ′1 and to project 2

is θ′2, while Sender 2’s respective reports are θ′′1 and θ′′2 , then the receiver allocates min{θ′1, θ
′′
1 } to project 1 and

min{θ′2, θ
′′
2 } to project 2.
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deviations might not be deterrable even if small ones are. The Global Deterrence Condition

is necessary and sufficient for existence of a (not necessarily robust) FRE. When the policy

space is convex, the Local and the Global Deterrence Conditions coincide.

In Section 5, we relax the assumptions that the directions of the senders’ biases are

(i) common knowledge and (ii) independent of the realization of the state. We prove that

when the receiver does not know the actual biases but knows only the minimal closed cone

in which they are certain to lie, and this minimal cone is the same for all states, then the nec-

essary and sufficient condition for existence of a robust FRE that is independent of the bias

magnitudes is the same Local Deterrence Condition identified in Proposition 4 in Section

3.1, except that the known biases b1 and b2 there are replaced by the least aligned possible

realizations of the biases. Furthermore, whenever a robust FRE exists, it is supported by

the receiver using the same punishment rule, the Min Rule, defined previously, except that

now the punishment is computed using the least aligned possible bias realizations.

1.1 Related Literature

The closest papers to ours are Battaglini (2002) and Ambrus and Takahashi (2008), both of

which analyze the existence of fully revealing equilibria when the receiver can consult two

equally informed senders.

Battaglini (2002) assumes that the policy space is the whole of Rp. He observes that

each sender’s preferences are aligned with those of the receiver in the subspace orthogonal

to the sender’s bias vector, and therefore the receiver can extract truthful information when

the sender’s influence is restricted to those dimensions. As long as the two senders’ biases

are linearly independent, the receiver can combine the two truthful reports to extract all the

information. This construction supports a FRE that is independent of the magnitudes of the

biases and also robust to small mistakes. However, Battaglini’s construction breaks down

when there are restrictions on the receiver’s feasible set of policies, since there are pairs of

reports for which the receiver’s response rule in this construction is infeasible.

Our construction of a FRE supported by the Min Rule relies on the same coordinate

system defined by the normal vectors to the senders’ biases. Yet there are crucial dif-

ferences between our construction and Battaglini’s. First, the Min Rule is an anonymous

rule, whereas the receiver’s strategy in Battaglini’s construction critically depends on which

sender made which report; consequently, even when Y = R2, the two strategies do not al-

ways coincide. Second, as we show in Section 5, our construction of a robust FRE using

the Min Rule can be extended to a setting where the receiver does not know the actual di-

rections of the biases but knows only the minimal closed cone in which they are certain to

lie. Such an extension is not possible with Battaglini’s construction, since the receiver’s un-

certainty about the directions of the biases prevents him from identifying the subspaces in

which each sender’s preferences are aligned with his. Most importantly, while Battaglini’s

construction is infeasible for restricted policy spaces even when a FRE exists, we show that

whatever the form of the policy space, the feasibility of the Min Rule is both necessary as

well as sufficient for the existence of a robust FRE.
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Ambrus and Takahashi (2008) consider the case of compact and convex policy spaces.

They show that there exists a FRE for any magnitudes of the biases if and only if, as the

biases become large, the senders have a common least-preferred policy.6 While this char-

acterization result is elegant, their equilibrium construction involves the receiver punishing

any discrepancies between the senders’ reports by choosing their common least-preferred

policy.7 As they themselves acknowledge, the use of extreme punishments after even small

deviations is unappealing, since such deviations could in practice arise from small mistakes

by the senders. In response to this criticism they introduce a robustness concept called

continuity on the diagonal that can be shown to be equivalent to our robustness definition.8

However, they present only negative findings concerning the existence of robust fully re-

vealing equilibria.

Their negative findings contrast strikingly with our main result, Proposition 3, which

states that once we have secured the existence of a FRE that is independent of the mag-

nitudes of the biases, then robustness comes for free. The reason for this striking contrast

is that their examples of nonexistence of a robust FRE are all ones in which a FRE that is

independent of the magnitudes of the biases does not exist. Our Proposition 5 shows that

if there does not exist a FRE that is independent of the magnitudes of the biases, then no

robust FRE exists, even for small magnitudes of the biases.

Finally,9 Ambrus and Lu (2014) and Rubanov (2015) construct equilibria in a unidi-

mensional policy space that are arbitrarily close to full revelation.10 Both papers show that

their equilibria survive the introduction of a small probability of the senders observing a

random state which is independent of the true state. The equilibria in the two papers in-

volve constructing complex partitions of the policy space (different for different senders)

and having each sender report the element of his partition in which his observation lies.

Asymptotically, incentives for truthful reporting follow because any change in a sender’s

message (holding fixed the messages of the others) results in a sufficiently large change in

the receiver’s action. Importantly, the equilibria in these two papers do not satisfy our ro-

bustness concept: The senders might observe states that are arbitrarily close to each other,

yet the receiver’s action in response to the equilibrium messages might be far away from

the senders’ observations. Our notion of robustness differs from theirs in that we do not

explicitly model the occurrence of mistakes, or in other words, the players in our model

are unaware of the possibility of mistakes. Yet crucially, our equilibrium concept requires

6In contrast to Ambrus and Takahashi (2008), we seek existence of a fully revealing equilibrium that is inde-
pendent of the magnitudes of the biases. In general, this is a stronger requirement than Ambrus and Takahashi
(2008)’s requirement that a FRE exist for any magnitudes of the biases, since we, unlike them, require the same
equilibrium strategies to remain an equilibrium no matter how large the bias magnitudes. Footnote 19 discusses in
more detail the contrast between our equilibrium concept and results and those of Ambrus and Takahashi (2008).

7For small biases, even in states where this policy is not the least preferred policy for both senders, it is never-
theless always worse for both of them than the policy the receiver would choose if he had full information.

8See Lemma 2 in the Appendix.
9There is a small recent experimental literature on multi-sender cheap talk. Lai et al. (2015), in particular,

discuss robustness, but because their state and policy space is discrete, our concept of robustness cannot be applied
in their setting.

10Ambrus and Lu (2014) require the policy space to be larger, the closer their equilibrium is to be to full
revelation, whereas Rubanov (2015) requires the number of senders to grow for his asymptotic result.
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that the response of the receiver be close to the senders’ reports whenever these reports

are themselves close: this ensures that small mistakes by the senders do not lead to large

responses/punishments by the receiver. Our motivation for imposing continuity on the re-

ceiver’s out-of-equilibrium actions is shared by Friedman and Samuelson (1990; 1994),

who impose a similar restriction on strategies in repeated games. They argue (1994, p.56),

"In many circumstances strategies associating severe penalties with arbitrarily small devia-

tions are implausible."

2 The Model

We analyze a game of cheap talk between two senders, S 1, S 2, and a receiver, R. Both

senders perfectly observe θ ∈ Θ, the realization of a random variable θ̂. We will refer to the

realization θ as the state, and to Θ ⊆ Rp as the state space, which has dimension p ≥ 1. The

prior distribution of θ̂ is given by F and is commonly known. After observing θ, each sender

S i sends a costless and unverifiable message mi ∈ Mi to the receiver, who then chooses a

policy y from a closed set Y of feasible policies. Both Mi and Y are independent of the

realization of the state θ. We refer to Y as the policy space and without loss of generality

we assume that Y ⊆ Θ. An interpretation of this assumption is that Θ is the set of ideal

policies for the receiver, but only those in Y ⊆ Θ are feasible. Clearly in the case Θ ⊂ Y ,

we can without loss of generality ignore all those policies in Y that are not in Θ. The pair

(Θ,Y) is called the environment of the game.11

Given the state θ and the chosen policy y, the receiver’s utility is uR(y, θ) = −|y − θ|2

and each sender i’s utility is uS i(y, θ) = −|y − θ − bi|
2, where | · | denotes the Euclidean

norm in Rp.12 The vector bi ∈ R
p is referred to as the bias vector of sender S i. Unless

otherwise specified, the direction of bi is assumed to be independent of the state θ and

common knowledge among the players. Both of these assumptions are relaxed in Section

5. Given these utilities, the ideal policy for the receiver is to match the state; however

since Y might be a strict subset of Θ, such a policy might not be feasible. We denote by

y∗(θ) ∈ arg maxy∈Y uR(y, θ) an optimal feasible policy for the receiver when the state is θ.

Clearly, in the particular case in which Y = Θ, y∗(θ) = θ.13

A pure strategy for sender S i is denoted by si : Θ −→ Mi, and a pure strategy for the

receiver is denoted by yR :M1×M2 −→ Y . Given messages m1,m2, µ(m1,m2) denotes the

receiver’s belief about y∗(θ̂) after receiving messages m1,m2.14

The equilibrium concept we use is Perfect Bayesian Equilibrium.

11The shape of the policy space Y plays a key role in the analysis. As we will see in Proposition 2, for a fixed Y ,
it makes no difference to our results whether Y = Θ or Y ⊂ Θ.

12In Section 5 we discuss the extension to general quasi-concave utility functions.
13When the policy space Y is a strict subspace of Θ and Y is non-convex, the set arg miny∈Y (y − θ)2 might not

be a singleton. In such a case, we will focus on one particular optimal feasible policy and label this y∗(θ). As we
argue in Footnote 15 such a restriction is without loss of generality for the characterization of existence of fully
revealing equilibria.

14Since the senders’ payoffs depend on the receiver’s choice of policy, it is more convenient to work directly
with the receiver’s beliefs over the optimal feasible policy y∗(θ̂) than with his beliefs over θ̂.
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Definition 1. The strategies (s1, s2, yR) constitute a pure Perfect Bayesian Equilibrium if

there exists a belief function µ such that:

(i) si is optimal given s−i and yR for i ∈ {1, 2}.

(ii) yR(m1,m2) is optimal given µ(m1,m2) for each (m1,m2) ∈ M1 ×M2.

(iii) s1, s2 are measurable and if s−1
1 (m1)∩ s−1

2 (m2) , ∅, µ(m1,m2) puts probability one on

y∗(s−1
1 (m1) ∩ s−1

2 (m2)). Moreover, if s−1
1 (m1) ∩ s−1

2 (m2) has positive probability with

respect to F, µ(m1,m2) is derived from Bayes’ rule.

Whenever the policy space Y is convex, the set of optimal policies for the receiver,

given a belief µ, is a singleton, and hence the receiver always uses a pure strategy. This is

not necessarily the case if Y is not convex. In Section 4, we explicitly analyze non-convex

policy spaces, and we take into account the possibility of mixing by the receiver.

We will focus on a particular type of equilibrium in which the receiver perfectly learns

an optimal feasible policy from the messages of the senders. We will say that the strategies

(s1, s2) are fully revealing if for any θ ∈ Θ, the receiver’s belief given messages s1(θ) and

s2(θ) puts mass one on y∗(θ).15 An equilibrium with fully revealing strategies is called a

fully revealing equilibrium (FRE).

Our goal in this paper is to characterize the conditions under which there exist equilibria

that are not only fully revealing but that also satisfy two additional desirable properties: i)

robustness to small mistakes by the senders and ii) independence of the magnitudes of the

senders’ biases.16 The next two subsections formally define each of these properties of a

FRE.

2.1 Robustness

Our first desirable property is motivated by the possibility that the senders might have made

small mistakes, either because they might not have perceived the state perfectly accurately,

or because they might have “trembled” when sending their messages. In those situations,

it is natural to require the receiver’s response to be close to the response that would have

resulted in the absence of such mistakes.

We now formulate a definition of robustness of an equilibrium that explicitly captures

this reasoning. Given x ∈ Rp, r > 0, denote by B(x, r) = {θ ∈ Rp | |θ − x| < r} the open ball

with centre x and radius r.

Definition 2. Given some fully revealing strategies (s1, s2) for the senders, the receiver’s

strategy yR is robust if for any θ ∈ Θ and any ε > 0, there exists a δ > 0 such that, if: (i)

15In general, one could say that (s1, s2) are fully revealing strategies if the support of the receiver’s belief is
contained in Y∗(θ) ≡ arg maxy∈Y uR(y, θ). However, even if Y∗(θ) is not a singleton, there cannot exist a FRE in
which the receiver mixes on the equilibrium path. The reason is that such mixing would create an incentive to
deviate for at least one sender. Therefore, without loss of generality we can restrict to situations in which for any
θ, the receiver implements a deterministic optimal feasible policy that we will denote y∗(θ).

16For clarity of exposition, the senders are restricted to using pure strategies throughout the paper. It can in fact
be shown that, when the policy space is convex, allowing the senders to use mixed strategies would not alter the
necessary and sufficient conditions for existence of fully revealing equilibria (or of robust fully revealing equilibria)
that are required to be independent of the magnitudes of the biases.
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θ′, θ′′ ∈ B(θ, δ) ∩ Θ, and (ii) y∗(θ′), y∗(θ′′) ∈ B(y∗(θ), δ) ∩ Y , then

yR(s1(θ′), s2(θ′′)) ∈ B(y∗(θ), ε) ∩ Y

A fully revealing equilibrium (s1, s2, yR) in which yR is robust is called a robust fully

revealing equilibrium.1718

Definition 2 imposes conditions both on and off the equilibrium path.

On the equilibrium path, the definition imposes a continuity requirement on the senders’

fully revealing strategies. Specifically, when the senders’ small mistakes result in a pair of

messages that could have been observed jointly on the equilibrium path, and hence that

cause the receiver’s belief to attach mass one to a particular policy, we require that policy

to be close to the policy that would have resulted in the absence of mistakes.

More importantly, robustness imposes a restriction on the receiver’s response off the

equilibrium path. Consider two incompatible reports, m1,m2 (i.e. reports such that s−1
1 (m1)∩

s−1
2 (m2) = ∅) that are close in the following sense: given the fully revealing strategies s1, s2,

there are two states θ′, θ′′ that could have generated those messages (i.e. s1(θ′) = m1 and

s2(θ′′) = m2) and that, in addition, are (i) close to each other and (ii) lead to optimal feasi-

ble policies that are also close to each other. The robustness restriction requires that, given

incompatible reports that are close in this sense, the receiver’s optimal response must be

close to the optimal feasible policies corresponding to the states θ′ and θ′′. Note that if Y

is convex or Θ = Y , then condition (ii) is superfluous: in either case, whenever θ′ and θ′′

are close, y∗(θ′) and y∗(θ′′) are also close. Condition (ii) is relevant when Y is non-convex

and Y ( Θ, because in this case, small changes in θ for θ < Y could result in large changes

in the receiver’s optimal feasible policy y∗(θ): our robustness requirement does not apply

when y∗(θ′) and y∗(θ′′) are not close.

As mentioned above, our robustness requirement is motivated by the possibility of small

mistakes by the senders, either in observing or in communicating the state. Formally, our

analysis assumes that, ex ante, the senders and the receiver are unaware that these mistakes

might happen. Definition 2 ensures that as the size of the mistakes goes to zero, the equi-

librium outcome in the presence of mistakes approaches the outcome when mistakes never

occur.

An additional motivation for focusing on robust fully revealing equilibria is provided by

the analysis, in Section 3.1.1, of the possibility of collusion by the senders. We show there

that our robustness requirement makes the receiver’s strategy more effective in deterring

collusion.

As will become clear later, it is useful to define when a strategy deters local deviations

with local punishments, even if it might not deter larger deviations.

17Strategies (s1, s2) can together be fully revealing even if each sender’s report by itself does not fully reveal
the optimal feasible policy. Battaglini’s (2002) construction of a fully revealing equilibrium for an unrestricted
multidimensional state space is an example of this possibility. We have stated Definition 2 in a way that allows for
this possibility.

18In the Appendix we show that this concept of robustness extends the concept of diagonal continuity introduced
by Ambrus and Takahashi (2008) to cases in which Y ( Θ and is not convex.
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Definition 3. Given some fully revealing strategies (s1, s2) for the senders, the receiver’s

strategy yR is said to deter local deviations with local punishments, if it is robust and there

exists a δ > 0 such that for any θ′, θ′′ ∈ Θ with |θ′ − θ′′| < δ,

uS 1(yR(s1(θ′), s2(θ′′)), θ′′) ≤ uS 1(y∗(θ′′), θ′′)

uS 2(yR(s1(θ′), s2(θ′′)), θ′) ≤ uS 2(y∗(θ′), θ′)

The two displayed inequalities ensure that neither of the senders has an incentive to

deviate by pretending to have observed a nearby state, given that the receiver’s strategy yR

is required to be robust. In particular, the first (second) condition says that when the true

state is θ′′ (θ′), yR is such that there is no nearby state θ′ (θ′′) that sender S 1 (S 2) would

want to pretend to have observed.

Note that given the quadratic form of the senders’ utilities, uS i(y, θ) = −|y− θ − bi|
2, the

set of policies that sender S i prefers to y∗(θ) is the ball B(θ+bi, |y∗(θ)−θ+bi|). In the case in

which θ ∈ Y , and hence y∗(θ) = θ, S i’s preferred set of policies is just B(θ + bi, |bi|). Figure

2 illustrates a strategy for the receiver that deters local deviations with local punishments.

Y

θ θ′
θ′′

b1 B(θ′′ + b1, |b1|)

b2

B(θ′ + b2, |b2|)

yR(θ′, θ′′)

B(θ, ε)

Figure 2: Robust punishment of a local deviation: The policy yR(θ′, θ′′) deters the deviation (θ′, θ′′), since
yR(θ′, θ′′) lies outside both the set of policies (those inside the blue circle) that sender 1, in state θ′′, prefers
to θ′′ and the set of policies (those inside the red circle) that sender 2, in state θ′, prefers to θ′. This policy is
also robust since it is close to both θ′ and θ′′.

In a fully revealing equilibrium (FRE), the receiver perfectly learns an optimal feasible

policy from the pair of messages, and neither sender has an incentive to try to mislead

the receiver by sending a different message. Using a similar argument to the Revelation

Principle we can, without loss of generality, concentrate on fully revealing equilibria in

which each sender truthfully reports y∗(θ). The strategies (s1, s2) are truthful if M1 =

M2 = Y and for all θ ∈ Θ, s1(θ) = s2(θ) = y∗(θ). An equilibrium with truthful strategies is

called a truthful equilibrium.

Lemma 1 is an extension of Lemma 1 in Battaglini (2002) that incorporates our notion

of robustness. It considerably simplifies our subsequent analysis.

11



Lemma 1. For any (robust) fully revealing equilibrium there exists a (robust) truthful equi-

librium that is outcome-equivalent to it.

Proof: All proofs are in the Appendix.

2.2 Independence of the Magnitudes of the Biases

Given a bias vector b ∈ Rp, we define the magnitude of the bias as the Euclidean norm of

the vector, |b|. We focus our analysis on fully revealing equilibria in which strategies are

independent of the magnitudes of the biases:

Definition 4. Given biases b1, b2 ∈ R
p and a (robust) FRE (s1, s2, yR), the equilibrium

is independent of the magnitudes of the biases if it remains a (robust) FRE for all biases

t1b1, t2b2, with t1, t2 ∈ (0,+∞).

Definition 4 requires the same strategies to remain a FRE no matter the intensity of the

senders’ preferences. In many cases, even though it is clear that an expert is biased in a

certain direction, it is more difficult to assess the exact magnitude of that bias. In the ex-

ample in the introduction of an executive choosing an allocation of funds to two managers,

it might be clear to the executive that each manager would like more funds allocated to

his own project than would be optimal, but it might be harder to determine the intensity

of those biases, which might depend on traits unobservable to the executive. Definition 4

rules out equilibria whose existence depends on sharp conditions on the magnitudes of the

biases.

Note that a FRE that is independent of the magnitudes of the biases would remain a

FRE even if the receiver were uncertain about the magnitudes of the biases. In Section

5, we extend our characterization to cases in which the receiver is also, to some degree,

uncertain about the directions of the senders’ biases.

To understand the implications of Definition 4, consider θ ∈ Y , an therefore y∗(θ) = θ.

Note that if there exists a FRE for bias vectors (b1, b2), then for any biases (t1b1, t2b2), where

0 < t1, t2 ≤ 1, the same strategies constitute a FRE. The reason is that, for 0 < t ≤ 1, the set

of policies that, in state θ, a sender with bias b prefers to y∗(θ) contains the set of policies

preferred to y∗(θ) by a sender with bias tb: formally, B(θ + tb, |tb|) ⊆ B(θ + b, |b|). Hence

the same punishment that deters deviations by a sender with bias b will deter deviations

by one with smaller bias tb. (See Figure 3a.) Requiring the FRE to be independent of

the magnitudes of the biases is thus equivalent to requiring the same strategies to remain a

FRE even as the magnitudes of the biases become arbitrarily large. As observed by Levy

and Razin (2007), the indifference curves of a sender with a very large bias are very close

to hyperplanes orthogonal to the bias vector, and such a sender’s ranking of policies is

approximately independent of the true state of the world. This observation provides a very

simple characterization of the set of policy choices for the receiver that would deter the

sender, independently of the magnitude of his bias, from misreporting the state.

Figure 3b illustrates this characterization. Given a (bias) vector b ∈ Rp and a scalar k ∈

R, we define H(b, k) ≡ {x ∈ Rp | bx > k} and h(b, k) ≡ {x ∈ Rp | bx = k}. In words, H(b, k)

12



θ
b

B(θ + b, |b|)

tb

B(θ + tb, |tb|)

(a) The ball B(θ + b, |b|) represents the
set of policies preferred to θ ∈ Y by a
sender with bias b. Scaling down the
bias to tb with 0 < t ≤ 1 implies that
B(θ + tb, |tb|) ⊆ B(θ + b, |b|). Hence
any policy that deters deviations from a
sender with bias b also deters deviations
from a sender with smaller bias tb.

θ

y

H(b, bθ)

h(b, bθ)

tb

B(θ + tb, |tb|)

b

(b) As the magnitude of the bias in-
creases, the indifference curve passing
through θ converges to the hyperplane or-
thogonal to b and passing through θ, de-
noted h(b, bθ). The shaded half space
represents the set of policies that are
never preferred to θ independently of the
magnitude of the bias.

Figure 3: Independence of the magnitudes of the biases.

is the half-space composed of all the points in Rp whose inner product with b is greater than

k, and h(b, k) is the boundary of H(b, k). As Figure 3b shows, for any point y ∈ H(b, bθ), we

have by > bθ, and there exists a scalar t > 0 large enough so that y ∈ B(θ + tb, t|b|), i.e. so

that in state θ, the policy y is preferred to θ by a sender with bias tb. Therefore, in order for

a given policy choice of the receiver to deter misreporting independently of the magnitude

of the sender’s bias, the receiver’s choice must lie in R2 \ H(b, bθ), which corresponds to

the shaded half-space in Figure 3b.

Requiring the equilibrium to be independent of the magnitudes of the biases might be

seen as a strong requirement. However, we will show in Proposition 5 that when the policy

space is two-dimensional and robustness is required, the existence of a FRE becomes no

more likely even if we drop the requirement of independence of the magnitudes of the

biases.

2.3 Preliminary Results

Propositions 1 and 2 below allow us to abstract from specifying particular belief functions

when proving the existence or nonexistence of pure robust fully revealing equilibria that are

independent of the magnitudes of the senders’ biases. Proposition 1 deals with the case in

which the policy space coincides with the state space, and Proposition 2 extends the result

to the more general case in which the policy space is a subset of the state space.

The first part of Proposition 1 provides a necessary and sufficient condition for the exis-

tence of a fully revealing equilibrium that is independent of the magnitudes of the biases.19

19This condition coincides with the condition that Ambrus and Takahashi (2008) show in their Proposition 7 to
be equivalent, for the case of compact Y , to the existence of a FRE for arbitrarily large biases. Note, however, that
our requirement that there exist a FRE that is independent of the magnitudes of the biases is in general stronger
than Ambrus and Takahashi (2008)’s requirement that there exists a FRE for arbitrarily large biases: we require the
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The second part of Proposition 1 establishes a necessary and sufficient condition for the ex-

istence of a strategy that deters local deviations with local punishments and is independent

of the magnitudes of the biases. Finally, we show that the two conditions together are not

only necessary but also sufficient for the existence of a robust FRE that is independent of

the magnitudes of the biases.

Proposition 1. Suppose Y = Θ ⊆ Rp. Given b1, b2 ∈ R
p,

(i) There exists a pure fully revealing equilibrium that is independent of the magnitudes

of the biases if and only if

for any θ′, θ′′ ∈ Y, Y * H(b1, b1θ
′′) ∪ H(b2, b2θ

′) (1)

(ii) There exist some pure fully revealing strategies for the senders and a strategy for the

receiver that deters local deviations with local punishments and is independent of the

magnitudes of the biases if and only if

for any θ ∈ Y and any ε > 0, there exists δ > 0 such that for any θ′, θ′′ ∈ B(θ, δ) ∩ Y,

B(θ, ε) ∩ Y * H(b1, b1θ
′′) ∪ H(b2, b2θ

′)
(2)

(iii) Conditions (1) and (2) are necessary and sufficient for the existence of a pure robust

fully revealing equilibrium that is independent of the magnitudes of the biases.

When condition (1) holds, the receiver’s policy rule yR(θ′, θ′′) in a truthful equilibrium

will satisfy yR(θ′, θ′′) = θ′ if θ′ = θ′′ and yR(θ′, θ′′) ∈ Y \ H(b1, b1θ
′′) ∪ H(b2, b2θ

′) if

θ′ , θ′′. Such a rule is feasible and ensures that sender 1 (resp., 2) has no incentive to

deviate to a report of θ′ (resp., θ′′) when the true state is θ′′ (resp., θ′), even for arbitrarily

large magnitudes of the biases. Condition (2) implies that a feasible punishment can be

found arbitrarily close to the reports when these converge to each other.20 Henceforth

we will refer to Rp \H(b1, b1θ
′′)∪H(b2, b2θ

′) as the “punishment region” for the deviation

(θ′, θ′′) and to Y \H(b1, b1θ
′′)∪H(b2, b2θ

′) as the “feasible punishment region”. See Figure

4.

Proposition 2 states that there exists a (robust) fully revealing equilibrium for Y ⊆ Θ,

if and only if there exists a (robust) fully revealing equilibrium when the space state is

reduced to coincide with the policy space. In other words, when determining whether or

not a (robust) FRE exists, we can ignore those states that cannot be implemented as a policy.

Given a state space Θ ⊆ Rp and a policy space Y ⊂ Θ, denote by S Y the minimal subspace

same equilibrium strategies to remain an equilibrium no matter how large the magnitudes of the biases, whereas
they require only that for any magnitude of the biases there exists a FRE (which might depend on the magnitudes).
For instance, when the policy space is not compact, there always exists a FRE for arbitrarily large biases, so
Ambrus and Takahashi (2008)’s Proposition 7 does not hold in this case; in contrast, when Y is not compact, there
might not exist a FRE that is independent of the bias magnitudes. Our Proposition 1 is valid whether or not Y is
compact.

20Note that condition (2) is always satisfied for interior points, and hence only imposes a restriction on those
points in the frontier of Y .
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Y

θ

B(θ, ε)

θ′
θ′′

b1

b2

yR(θ′, θ′′)

Y

Figure 4: The shaded area represents the feasible punishment region given the incompatible pair of reports
(θ′, θ′′). The intersection of the shaded area with the ball B(θ, ε) represents the local punishment region.

of Rp such that Y ⊆ S Y .21 Given a vector b ∈ Rp, we denote by bY the projection of b onto

S Y .

Proposition 2. Given Θ ⊆ Rp, Y ⊆ Θ, b1, b2 ∈ R
p and their projections bY

1 , b
Y
2 ∈ S Y , the

following two statements are equivalent:

(i) For the environment (Θ,Y) and biases (b1, b2), there exists a pure (robust) fully re-

vealing equilibrium that is independent of the magnitudes of the biases.

(ii) For the environment (Y,Y) and biases (bY
1 , b

Y
2 ), there exists a pure (robust) fully re-

vealing equilibrium that is independent of the magnitudes of the biases.

Given Proposition 2, the shape of the state space Θ is irrelevant (as long as Y ⊆ Θ),

and all that matters for the existence of a pure (robust) FRE is the shape of the policy

space, relative to the projections of the senders’ bias vectors onto the minimal subspace,

S Y , containing the policy space. Therefore, when proving existence results for pure (robust)

FRE’s, we can without loss of generality focus on the case in which Θ = Y , and hence

y∗(θ) = θ. Proposition 1, which is stated for the case Θ = Y , will be our primary tool. For

the sake of simplicity, and with some abuse of language and notation, for the rest of the

paper we will refer to the projections of the biases onto the subspace S Y as the biases and

denote them directly by b1, b2.

Finally, we discuss two special cases where, for any number of dimensions and any

shape of Y , it is straightforward to draw conclusions about the existence of a robust fully

revealing equilibrium that is independent of the magnitudes of the biases. First, if the

senders’ bias vectors are in exactly the same direction (i.e. b1 = tb2 for some strictly posi-

tive scalar t), then there always exists a robust FRE that is independent of the magnitudes of

the biases. In it, the receiver responds to any discrepancy between the messages by choos-

ing whichever of the two reported states leads to a smaller inner product with (each of)

the bias vectors. In other words, the receiver’s chosen policy coincides with whichever of

the reported states would be less preferred by both senders, if both biases were sufficiently

21In particular, Y could be of a lower dimension than Θ.
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large. Such a strategy for the receiver ensures that neither sender can strictly gain by deviat-

ing from truthful reporting, no matter how large his bias. Furthermore, since the receiver’s

chosen policy always coincides with one of the senders’ messages, this FRE satisfies our

definition of robustness. (See Figure 5a.)

Second, if the biases are exactly opposite (i.e. b1 = tb2 for some strictly negative

scalar t), then it follows from part (i) of Proposition 1 and Proposition 2 that there exists

a FRE that is independent of the magnitude of the biases “if and only if Y is included in

a lower dimensional hyperspace that is orthogonal to the direction of the biases” (Ambrus

and Takahashi (2008, p.13)). In addition, it follows from part (ii) Proposition 1 that when

a FRE exists in this case, a robust FRE exists as well: a (truthful) robust FRE is supported

by a response function for the receiver such that y(θ′, θ′′) = λθ′ + (1 − λ)θ′′, for λ ∈ [0, 1].

(See Figure 5b.)

θ′′

θ′

b1

b2

(a) Aligned biases: y(θ′, θ′′) = θ′′

provides a feasible robust punish-
ment. The shaded area is the pun-
ishment region given (θ′, θ′′).

θ′′

θ′

b1

b2

(b) Opposite biases: the punish-
ment region given (θ′, θ′′) is empty.

Figure 5: Special Cases: aligned biases and opposite biases.

For the remainder of the paper, we will exclude these two special cases and assume that

b1 and b2 are linearly independent.

3 Convex Policy Spaces

We begin by focusing on convex policy spaces in an arbitrary number of dimensions.22

Proposition 3 below shows that, when focusing on strategies that are independent of the

magnitudes of the biases, whenever there exists a fully revealing equilibrium (FRE), there

also exists a robust FRE. In fact, if small deviations cannot be deterred with small punish-

ments, then they cannot be deterred with any feasible punishments. Moreover, we show that

for convex state spaces that are two-dimensional or multidimensional and compact, it is suf-

ficient for existence of a FRE that is independent of the magnitude of the biases (robust or

not) that small deviations can be deterred (with small punishments). These preliminary re-

sults are extremely useful, because they show that a) robustness is, perhaps surprisingly, not

a restrictive requirement on a FRE when it is independent of the magnitudes of the biases

22For convex policy spaces, the receiver optimal policy is always degenerate, and hence the use of pure strategies
by the receiver is without loss of generality. In particular, the non-existence of pure (robust) FRE implies the non-
existence of FRE.
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and the policy space is convex; and b) in the two-dimensional or compact multidimensional

cases, we need only ensure that local deviations can be punished.

Proposition 3. Given Y ⊆ Rp convex and b1, b2 ∈ R
p linearly independent, the following

statements are equivalent:

(i) There exists a fully revealing equilibrium that is independent of the magnitudes of the

biases.

(ii) There exists a robust fully revealing equilibrium that is independent of the magnitudes

of the biases.

When we further assume that a) Y ⊆ R2 or that b) Y ⊆ Rp and Y is compact, then the

following statement is also equivalent to the previous two:

(iii) Local deviations can be deterred with local punishments that are independent of the

magnitudes of the biases.

θ′
θ′′

b1

b2

B(θ, ε)

θ

y

y′

Y

Figure 6: Y convex: A local punishment exists whenever a punishment exists. The grey area represents the
feasible punishment region given (θ′, θ′′).

The intuition behind the first equivalence in Proposition 3 is illustrated in Figure 6.

Given an incompatible pair of reports (θ′, θ′′), consider the feasible punishment region Y \

(H(b1, b1θ
′′)∪H(b2, b2θ

′)) (shaded area). If there exists a FRE, then the feasible punishment

region has to be non empty. Denote by y a feasible punishment. Given that Y is convex,

and θ′, θ′′ and y are all feasible policies, the triangle of convex combinations of these three

policies is also feasible. As θ′ and θ′′ converge to θ, there are policies, such as y′, that

belong to that triangle and that lie in the intersection of the feasible punishment region and

the ball B(θ, ε), so are feasible local punishments.

Figure 7 illustrates the intuition for why, when Y ⊆ R2, local deterrence of local de-

viations is sufficient for existence of a FRE. Suppose there were a (large) deviation, such

as (θ′, θ′′), that could not be deterred, i.e., the punishment region (dark grey area) does not

intersect the policy space. Then it would be possible to construct a local deviation (θ′, θ̃′′),

by choosing θ̃′′ along the segment [θ′, θ′′] and close to θ′, and by the convexity of Y, the

whole of the punishment region for that deviation would still be infeasible.
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Y

θ′ θ′′

h(b2, b2θ
′)

b2

h(b1, b1θ̃
′′)

b1

θ̃′′

Figure 7: Y ⊆ R2 and convex: When a large deviation such as (θ′, θ′′) cannot be deterred, there is a
local deviation, (θ′, θ̃′′), that cannot be deterred with local punishments. The shaded areas correspond to the
punishment regions given (θ′, θ′′) (dark grey) and given (θ′, θ̃′′) (light and dark grey).

The result of Proposition 3 might be surprising in the light of Ambrus and Takahashi’s

(2008; Section 4.2)’s negative findings regarding the existence of robust fully revealing

equilibria. They provided examples in which a robust FRE did not exist even though for

sufficiently small magnitudes of the biases it was possible to construct a FRE. However, in

all of these examples, a FRE did not exist for sufficiently large biases.

In Proposition 5 in Section 3.1, we show that for two-dimensional spaces, once the

equilibrium is required to be robust, the magnitudes of the biases do not play any role.

Intuitively, even a small bias can be regarded as extremely large when we consider local

punishments after very small disagreements among senders. And hence, if there does not

exist a FRE that is independent of the magnitudes of the biases, then no robust FRE exists,

even for small magnitudes of the biases.

In the next subsection, we provide a local necessary and sufficient condition for the

existence of a robust FRE independent of the magnitudes of the biases that is constructive

in the sense that it provides a policy rule that implements a robust FRE whenever one exists.

Given Proposition 3, when stating this and subsequent results, we will write “There exists

a (robust) FRE that is independent of the magnitudes of the biases" to refer to both of the

statements (i) and (ii) that Proposition 3 proves are equivalent.

3.1 Policy Space a Subset of R2

In this section, we focus on the case where the policy space is two-dimensional. We start by

defining a particular policy rule for the receiver that, if feasible, implements a robust FRE.

Definition 5. Given b1, b2 ∈ R
2 linearly independent, the Min Rule is the function from

R2 × R2 to R2 that, for every pair of reports θ′, θ′′ ∈ R2, implements the point θ′ ∧{b1,b2} θ
′′

in R2 defined by:
b1(θ′ ∧{b1,b2} θ

′′) = min{b1θ
′, b1θ

′′}

b2(θ′ ∧{b1,b2} θ
′′) = min{b2θ

′, b2θ
′′}.

In words, the Min Rule selects the policy which is the coordinate-wise minimum of the
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senders’ reports, using the coordinate system formed by the normal vectors to the biases.

Note that θ′∧{b1,b2}θ
′′ depends only on the direction and not on the magnitudes of the biases.

If the two reports coincide, the Min Rule selects the common report. If the reports

differ, the inner product of the policy selected by the Min Rule with each bias vector is,

by definition, weakly smaller than the inner product of each of the reports with that bias.

Hence the chosen policy θ′ ∧{b1,b2} θ
′′ is, regardless of the magnitudes of the biases, weakly

worse for both senders than both of the reports provided, so can act as a punishment for the

deviation θ′ , θ′′.23 Figure 8 illustrates the Min Rule for two different scenarios. Note that

the policy selected by the Min Rule can coincide with one of the reports, as in Figure 8a,

or can implement a completely distinct point, as in Figure 8b.

b1

b2

θ′′
θ′

θ′ ∧{b1,b2} θ
′′

(a) Min Rule when the Senders
have the same ranking over reports.
In this case both senders prefer θ′ to
θ′′.

b1b2

θ′

θ′′

θ′ ∧{b1,b2} θ
′′

(b) Min Rule when the Senders
have different rankings over re-
ports. In this case Sender 1 prefers
θ′ to θ′′, whereas Sender 2 prefers
θ′′ to θ′.

Figure 8: Min Rule for the receiver

The Min Rule is anonymous in that it selects the same policy in response to (θ′, θ′′)

and (θ′′, θ′). Among all anonymous rules, the Min Rule prescribes the punishment that is

least severe for each of the senders, subject to deterring both of them from deliberately

misreporting, no matter how large their biases. In particular, as the two reports converge to

each other, the policy selected by the Min Rule also converges to the same point, and hence

if the punishment is feasible, it constitutes a robust punishment that is independent of the

magnitudes of the biases.

It remains to determine when it is feasible for the receiver to respond to a deviation

according to the Min Rule. Proposition 4 below provides a simple geometric condition,

which we term the Local Deterrence Condition, that is necessary and sufficient for the

existence of a robust FRE. The proposition also shows that the Min Rule is a feasible policy

if and only if the Local Deterrence Condition is satisfied. In other words, the feasibility of

punishing deviations according to the Min Rule is necessary as well as sufficient for the

existence of a robust FRE that is independent of the magnitudes of the biases.

Before stating the characterization, we need to introduce some additional notation.

Given S ⊂ R2 closed and convex, we denote the frontier of S by Fr(S ). We say that a

23To see this, denote by y = θ′ ∧{b1,b2} θ
′′ so biy ≤ biθ for i = 1, 2. Then (θ+ bi − y)2 = b2

i + (θ− y)2 + 2bi(θ− y) >
b2

i = (θ + bi − θ)2. In other words, for both senders, y is farther from θ + bi than θ is, and hence neither sender has
an incentive to deviate from truthfully reporting θ.
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point s ∈ Fr(S ) is smooth if there exists a unique tangent hyperplane to Fr(S ) at s. Any

point in Fr(S ) that is not smooth will be called a kink. The set of smooth points in the

frontier is denoted by F̃r(S ). For any s ∈ F̃r(S ), we denote by nIn
S (s) the unit normal

vector to Fr(S ) at s in the inward direction to S : nIn
S (s) is the unique vector that satisfies

nIn
S (s)(s′ − s) ≥ 0 for all s′ ∈ S .

Given b1, b2 ∈ R
2, define C(b1, b2) ≡ {b ∈ R2 | b = αb1 + βb2 | α, β > 0}, the open

convex cone spanned by the vectors b1, b2. Similarly, adopting notation used for intervals

in R, define C[b1, b2] ≡ {b ∈ R2 | b = αb1 + βb2 | α, β ≥ 0}, the closed convex cone

spanned by the vectors b1, b2 and C(b1, b2] ≡ {b ∈ R2 | b = αb1 + βb2, with α ≥ 0, β > 0},

the convex cone that includes the extreme direction b2 but not b1.

Proposition 4. Given Y ⊆ R2 convex and b1, b2 ∈ R
2 linearly independent, the following

statements are equivalent:

(i) There exists a (robust) fully revealing equilibrium that is independent of the magni-

tudes of the biases.

(ii) For every θ ∈ F̃r(Y), nIn
Y (θ) < C(b1, b2). (Local Deterrence Condition)

(iii) For every θ′, θ′′ ∈ Y, θ′ ∧{b1,b2} θ
′′ ∈ Y. (Feasibility of Min Rule)

Condition (iii) says that responding to any deviation according to the Min Rule is a

feasible strategy for the receiver, and hence by using the Min Rule, the receiver can deter

deviations in a robust way. Whenever the reports (θ′, θ′′) of the senders do not agree, the

receiver’s action is rationalized by a belief that allocates mass one to θ′ ∧{b1,b2} θ
′′ ∈ Y .

The Local Deterrence Condition (condition (ii)) is a condition on the directions of the

senders’ bias vectors relative to the frontier of the policy space. For a given smooth point

on the frontier, θ ∈ F̃r(Y), the condition nIn
Y (θ) < C(b1, b2) is satisfied if and only if, in

state θ, there exists, close to θ, a feasible policy for the receiver that, no matter how large

the magnitudes of the biases, is worse for both senders than the policy y = θ.

To understand the intuition behind the proposition, note that by Proposition 3, to prove

the existence of a robust FRE it is enough to check whether local deviations can be punished

locally. Whether this is the case is exactly what the Local Deterrence Condition establishes.

Clearly, if a pair of incompatible reports converge to a point in the interior of the policy

space, punishing locally is never problematic, since the punishment region always intersects

the policy space in a neighbourhood of the point. However, if a pair of incompatible reports

converge to a point θ on the frontier of the policy space, then punishing locally requires

that, close to θ, there exist a feasible policy that, for any bias magnitudes, would make both

senders worse off than the policy y = θ.

In what follows we illustrate the results of Proposition 4 through a couple of examples.

Consider the funding allocation game introduced in the Introduction and depicted in Figure

9a. The receiver has to allocate funds from a budget to two different projects, each one

overseen by one of the senders. The maximum amount of funds that can be allocated is

exogenously fixed, and each project must receive a non-negative level of funding. The

optimal allocation of funding depends on some information known to the senders but not to
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the receiver. Relative to the receiver, each sender is biased towards the project he oversees.

Since the inward normal vector to smooth points on the frontier of the policy space has only

three distinct orientations in this example, it is particularly easy to confirm that the Local

Deterrence Condition is satisfied in this setting, as illustrated in Figure 9a. It follows that

all local deviations can be punished locally.

The Min Rule for the receiver explicitly identifies a feasible local punishment in re-

sponse to any local deviation. For the orthogonal biases shown, the Min Rule chooses the

component-wise minimum of the senders’ reports with respect to the Euclidean coordi-

nates: θ′ ∧{b1,b2} θ
′′ = (min{θ′1, θ

′′
1 },min{θ′2, θ

′′
2 }). It is also easy to confirm directly from

Figure 9a that in this setting the punishment specified by the Min Rule is always feasible.

Note that big deviations are also deterred by the receiver using the Min Rule. For ex-

ample, if each sender claims the whole budget for his own project, the Min Rule prescribes

that the receiver allocate zero funds to each of them. But by Proposition 3, we do not need

to explicitly check whether big deviations can be deterred: as long as local deviations are

deterrable, big deviations will also be deterrable.

Θ ≡ Y

Funds allocated
to project 1

Funds allocated
to project 2

θ

b1

b2
θ′′

θ′
nIn

Y (θ)

θ′ ∧{b1 ,b2} θ
′′

θ̃
nIn

Y (θ̃)

θ̂

nIn
Y (θ̂)

(a) Allocation of funds given a budget
constraint. The shaded area represents the
feasible allocations.

Θ ≡ Y

Funds allocated
to project 1

Funds allocated
to project 2

b1

b2

θ

nIn
Y (θ)

θ′′

θ′

θ̃′′

θ̃′
θ′ ∧{b1 ,b2} θ

′′

(b) Allocation of funds across depart-
ments given a maximum total budget cut.
The shaded area corresponds to the feasi-
ble allocations.

Figure 9: Illustration of robust FRE in the case of allocation of funds/cuts.

Figure 9b illustrates why the Local Deterrence Condition is necessary for existence

of a robust FRE. In Figure 9b, the receiver, a local government, needs to determine the

allocation of funding for two departments; depending on the state of the world, the optimal

allocation might involve some budget cuts up to a maximum total level of cuts. As can

be seen in the figure, the Local Deterrence Condition is violated at θ, a smooth point on

the segment of the frontier representing the maximum total level of cuts. The implication

of this violation is that incompatible reports along the frontier, such as (θ′, θ′′), cannot be

deterred, since doing so in a manner independent of the magnitudes of the biases would

require imposing as a punishment deeper total cuts than the maximum level allowed.

One might argue that violations of the senders’ incentives for truthtelling along the
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frontier are a minor problem if, for instance, the probability of those states arising is close to

zero.24 However, the fact that local deviations along the frontier are not deterrable implies

that more general and bigger deviations are not deterrable either. Consider, in Figure 9b, the

pair of reports (θ̃′, θ̃′′), which correspond to each sender arguing that some cuts are needed

but not in his own department. There is no feasible punishment that would deter such a

deviation independently of the magnitudes of the biases.

To introduce the final result of this subsection recall that, as Proposition 3 showed, re-

quiring of a FRE that is independent of the magnitudes of the biases that it also be robust

does not restrict the circumstances under which it exists. We now show, in Proposition 5

below, that existence of a robust FRE becomes no more likely even if we drop the require-

ment that it be independent of the magnitudes of the biases. The reason is that when the

receiver is constrained to use small punishments, then whether the senders have incentives

to deviate from truthtelling depends only on the orientations, not the magnitudes, of their

bias vectors.

Proposition 5. Given Y ⊆ R2 convex and b1, b2 ∈ R
2 linearly independent, the following

statements are equivalent:

(i) There exists a robust fully revealing equilibrium.

(ii) There exists a (robust) fully revealing equilibrium that is independent of the magni-

tudes of the biases.

Proposition 5, together with Proposition 4, implies that the Local Deterrence Condition

is a necessary and sufficient condition for the existence of a robust FRE for given biases

b1, b2.

3.1.1 Collusion Proofness

Since the senders have common information and could potentially attempt to mislead the

receiver by both making the same false report, another desirable property of a fully re-

vealing equilibrium is collusion-proofness. We will say that a FRE is collusion-proof if,

whenever there is a feasible policy θ̂ that is at least weakly preferred by both senders to

the true state θ, colluding by both reporting θ̂ would not be self-enforcing for the senders,

because at least one of them would have a profitable unilateral deviation.

Definition 6. Given bias vectors b1, b2 and given a FRE (s1, s2, yR), we say that the equi-

librium is collusion-proof, if for all θ ∈ Y and all θ̂ ∈ Y such that

uS 1(θ̂, θ) ≥ uS 1(θ, θ) and uS 2(θ̂, θ) ≥ uS 2(θ, θ)

there exists θ̃ ∈ Y such that either:

uS 1(yR(θ̃, θ̂), θ) > uS 1(θ̂, θ) or uS 2(yR(θ̂, θ̃), θ) > uS 2(θ̂, θ)
24As argued above, local deviations from a point in the interior of the policy space are always deterrable regard-

less of the shape of the policy space.
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Given a FRE, the specific beliefs held by the receiver following incompatible reports

will affect whether or not the FRE is collusion-proof, since these beliefs will determine

the receiver’s response if one of the senders were to deviate from the collusive plan. In-

tuitively, the more severely the receiver punishes incompatible reports, the less incentive

either sender will have to deviate from the collusive plan, and hence the less likely a FRE is

to be collusion-proof. To illustrate, consider the same funding allocation game depicted in

Figure 9a, which is reproduced in Figure 10a. For this game, there exists a non-robust FRE

that is independent of the magnitudes of the biases, in which the receiver responds to any

incompatible reports by choosing policy y: policy y is such that, for any true state θ , y,

it is strictly worse for both senders than θ. It follows that whenever the true state θ is such

that there exists a policy θ̂ that is preferred by both senders to θ, colluding by both reporting

θ̂ would be self-enforcing. So a FRE supported by such a harsh punishment strategy by the

receiver is not collusion-proof.

Θ ≡ Y

θ̂

θ b1

b2

y

(a) The FRE supported by the extreme punishment
y is not collusion-proof: in state θ, collusion on θ̂ is
self-enforcing.

Θ ≡ Y

θ̂

θ b1

b2

y1

y2

(b) The FRE supported by the Min Rule is collusion-
proof.

Figure 10: The severity with which the receiver punishes incompatible reports affects whether or not a FRE
is collusion-proof.

Now, in the same funding allocation game, consider the robust FRE supported by the

receiver using the Min Rule. Figure 10b illustrates the argument. Suppose that the true state

is θ, and consider whether collusion on the report θ̂, which is preferred by both senders,

would be self-enforcing. For either sender, if he expected the other sender to report θ̂ and

the receiver to respond using the Min Rule, then the set of policies which he could induce

the receiver to choose is indicated by the shaded region in the figure. (Recall that the Min

Rule is an anonymous rule.) Sender 1 could increase his payoff by deviating from the

collusive report of θ̂ to the report y1, thereby inducing the policy y1. Similarly, Sender 2

could gain by deviating from θ̂ to y2, thereby inducing the receiver to choose y2. In fact, in

the environment depicted in Figure 10b, whenever there is a feasible policy θ̂ that is weakly

preferred by both senders (and at least strictly preferred by one of them) to the true state θ,

a plan to collude by both reporting θ̂ would give both senders an incentive to unilaterally

deviate. So the FRE supported by the receiver using the Min Rule is collusion-proof.

As we noted when we defined the Min Rule in Definition 5, this is the anonymous
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rule that, given incompatible reports, prescribes the least severe punishment for each of

the senders, subject to deterring deliberate misreporting, no matter how large their biases.

Intuitively, then, we would expect that the Min Rule should be the strategy for the receiver

that would make deviations from the collusive report most attractive. The next proposition

formalizes the benefit of the Min Rule in deterring collusion by the senders.

Proposition 6. Given Y ⊆ R2 convex, if the FRE supported by the receiver using the Min

Rule is not collusion-proof, then no other FRE that is independent of the magnitudes of the

biases can be collusion-proof.

Two things follow from Proposition 6: It is sufficient to focus on the FRE supported

by the Min Rule in order to see whether a collusion-proof FRE exists, and whenever a

collusion-proof FRE exists, there exists a robust FRE that is collusion-proof.

The dimension and shape of Y are both important in determining whether or not a FRE

supported by the Min Rule is collusion-proof. When Y ⊆ R, then it follows from the

discussion at the end of Section 2.3 that a robust FRE exists if and only if the senders’

bias vectors point in the same direction. Yet even when a robust FRE exists with Y one-

dimensional, no such FRE, even one supported by the Min Rule, is collusion-proof.25

On the other hand, suppose Y is the whole of R2. Since the Min Rule is clearly always

feasible, by Proposition 4 there exists a robust FRE supported by it. Here, as long as the

senders’ bias vectors are linearly independent, the robust FRE supported by the Min Rule

is collusion-proof. This follows from the same logic illustrated in Figure 10b. Suppose the

senders planned to collude by both reporting some θ̂ that they both preferred to the true state

θ. Any sender i for whom θ̂ did not lie on the line through θ in the direction of bi would, in

state θ, strictly prefer the receiver to choose the projection, yi, of θ̂ onto this line—since the

policy space is the whole of R2 and the receiver is expected to use the Min Rule, Sender i

could induce the receiver to choose yi by deviating from reporting θ̂ to reporting yi. And the

fact that the senders’ bias vectors are linearly independent guarantees that the projections

y1 and y2 are distinct policies, so at least one sender will have a strict incentive to deviate.26

To characterize exactly how the shape of the set of feasible policies determines whether

or not a FRE supported by the Min Rule is collusion-proof, we now introduce some further

notation that will be used only in this section. Given a smooth point on the frontier θ ∈

F̃r(Y), we denote by nOut
Y (θ̂) the outward normal vector to Y at θ̂, and by TY (θ̂) the set of

unit tangent vectors to Y at θ̂. For a generic θ̂ on the frontier of Y , we define the Polar Cone

of Y at θ̂ as the convex cone:

PCY (θ̂) ≡ {n ∈ R2 | n(θ − θ̂) ≤ 0, for all θ ∈ Y}

25Given any finite biases pointing in the same direction, find a state θ and a candidate collusive report θ̂ suffi-
ciently close to θ such that θ̂ lies, for each sender, strictly between θ and his ideal point θ + bi. Then neither sender
would have an incentive to deviate from the collusive report θ̂, since any robust response rule for the receiver that
supported a FRE would lead the receiver, in response to such a deviation, to choose a policy farther away than θ̂
from both senders’ ideal points.

26If b1 = tb2 for some strictly positive scalar t, then even for Y = R2, there is no collusion-proof FRE. The
argument parallels that for Y ⊆ R.
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Note that if θ̂ is a smooth point, then PCY (θ̂) ≡ nOut
Y (θ̂), but if θ̂ is a kink point, then PCY (θ̂)

has a non-empty interior.

The following proposition provides conditions that, whatever the magnitudes of the

biases, are necessary and sufficient for collusion-proofness of the robust FRE in which the

receiver uses the Min Rule. These conditions depend only on the directions and not on the

magnitudes of the biases.27

Proposition 7. Given Y ⊆ R2 convex, with non-empty interior, and biases b1, b2 ∈ R
2

linearly independent, the robust FRE supported by the Min Rule is collusion-proof if and

only if the following two conditions are satisfied:

(i) There does not exist a θ̂ ∈ F̃r(Y) and tY (θ̂) ∈ TY (θ̂) such that b1, b2 ∈ C(nOut
Y (θ̂), tY (θ̂)].

(ii) There does not exist a θ̂ ∈ Fr(Y) such that b1, b2 ∈ int(PCY (θ̂)).

θ̂
θ

nOut
Y (θ̂)

tY (θ̂)

Y

b1

b2

(a) Failure of condition (i): In state
θ, collusion on θ̂ is self-enforcing.
The shaded region represents the
policy space Y .

Y

PCY (θ̂)

θ̂

θ

b2

b1

(b) Failure of condition (ii): In state
θ, collusion on θ̂ is self-enforcing.
The light grey region represents the
policy space Y , and the dark grey
region represents the polar cone
PCY (θ̂).

Figure 11: The necessary and sufficient conditions for collusion-proofness

Proposition 7 shows that, given linearly independent bias vectors, there are only two

situations in which a robust FRE supported by the receiver using the Min Rule fails to be

collusion-proof. These two situations are illustrated in the two panels of Figure 11. When

condition (i) is violated at some θ̂, as in Figure 11a, then whatever the magnitudes of the

biases, there must exist a state θ sufficiently close to θ̂, such that collusion on θ̂ would be

self-enforcing in state θ: the frontier of Y renders infeasible the type of profitable unilateral

deviations from θ̂ that were possible in Figure 10b. Violation of condition (ii), illustrated

in Figure 11b, is equivalent to existence of a policy θ̂ which, for sufficiently large biases, is

both senders’ preferred policy in Y , regardless of the true state—it follows that in this case,

27If the conditions in Proposition 7 are satisfied, the FRE supported by the Min Rule is collusion-proof whatever
the magnitudes of the biases. If, however, one of the conditions fails, then our proof shows that whatever the
magnitudes of the biases, there is some true state θ and some report θ̂ such that collusion on θ̂ would be self-
enforcing. The smaller the magnitudes of the biases, the closer to the true state the collusive report would have to
be, in order to be strictly preferred by both senders to the true state. Nevertheless, whenever senders with given
biases would have an incentive, in state θ, to collude on the report θ̂, so would senders whose biases had larger
magnitudes.
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for any finite biases, there must exist a θ sufficiently close to θ̂ that collusion on θ̂ would be

self-enforcing in state θ, since in state θ, θ̂ is the best feasible policy for both senders.

Note that given Proposition 6, conditions (i) and (ii) together with the Local Deterrence

Condition are necessary and sufficient for the existence of a robust FRE that is collusion-

proof.

Collusion Proofness, the Min Rule, and Multiple Senders

We now briefly discuss the problem of deterring collusion in a setting with more than

two senders. We highlight that, regardless of the number of senders, the Min Rule remains

the most effective strategy for the receiver for deterring collusion, and the necessary and

sufficient conditions for it do so retain the same form; the key is to define the Min Rule

and the conditions in terms of the bias vectors for the pair of senders whose preferences are

least closely aligned.

With more than two (identically informed) senders, there always exists a FRE that is

independent of the magnitudes of the biases, regardless of the shape of the policy space

relative to the senders’ biases. Truthful revelation by the senders is supported by the re-

ceiver using a strategy which ignores any unilateral deviation. Moreover, such a strategy

for the receiver can always be specified in a way that is robust.28 However, such a FRE is

highly vulnerable to collusion by the senders: whenever there exists a candidate collusive

agreement (a feasible policy θ̂ that all senders weakly prefer to the true state), no sender

can gain by a unilateral deviation from θ̂, since such a deviation will have no effect on the

receiver’s policy choice.

By contrast, consider the n senders’ incentives for truthful revelation and for collusion

if the receiver is expected to use a version of the Min Rule. Specifically, suppose that the n

senders’ bias vectors are not all scalar multiples of one another and that they lie in a closed

convex cone, and denote the smallest such cone by C[b, b] = {αb + βb | α, β ≥ 0}. Thus, b

and b, the extreme rays of the convex cone, are the bias vectors of the two senders whose

bias directions are least closely aligned. For n senders for whom the least aligned biases

are b, b, define the Min Rule as the strategy for the receiver that, for every set of n reports

θ1, . . . , θn, with θi ∈ R2, implements the policy ymin ∈ R2 that is defined by

bymin = min{bθ1, . . . , bθn}

bymin = min{bθ1, . . . , bθn}.

If the Min Rule as just defined is feasible, then it supports a robust FRE that is inde-

pendent of the magnitudes of the biases. The reason is that the robust punishment specified

by the Min Rule ensures that each of the two senders with the least aligned bias vectors is

deterred from deviating from truthful revelation, and this implies that the same is true for

28Formally, robustness requires that, for any θ and ε > 0, there should be a δ > 0 such that if θi ∈ B(θ, δ)
for all i ∈ {1, ..., n}, then yR(θ1, .., θn) ∈ B(y∗(θ), ε). The following strategy for the receiver is one that supports a
robust FRE that is independent of the magnitudes of the biases: If all or all but one sender submit the same report,
implement that common report; if the senders submit three or more distinct reports, implement the report of sender
1.
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all other senders, since their bias vectors are convex combinations of b and b.29

With n senders, let us define a FRE as collusion-proof if, whenever there is a feasible

policy θ̂ that is at least weakly preferred by all senders to the true state θ, collusion by all

reporting θ̂ would not be self-enforcing for the senders, because at least one of them would

have a profitable unilateral deviation.

Given these definitions of the Min Rule and collusion proofness for the case of n

senders, we can show that Proposition 6 continues to hold, regardless of the number of

senders. That is, if the FRE supported by the receiver using the Min Rule is not collusion-

proof, then no other FRE that is independent of the magnitudes of the biases can be

collusion-proof. Furthermore, we can show that Proposition 7 also holds regardless of the

number of senders, with the only change being that the biases b1 and b2 are now replaced

by the least aligned pair of bias vectors, b and b.

3.2 Multidimensional Spaces

The results in Proposition 4 extend easily to higher dimensions. For b1, b2 linearly inde-

pendent, the only directions of conflict between the senders and the receiver are the ones in

the plane spanned by these two vectors. Thus, senders will not have incentives to deviate

by misreporting dimensions of the state orthogonal to this plane. On the other hand, the

receiver could potentially utilize these dimensions of no conflict to punish inconsistent mes-

sages. However, this strategy cannot be guaranteed to work for the receiver if the senders’

biases can be arbitrarily large.

Given b1, b2 ∈ R
p linearly independent, denote by Πb ⊂ R

p the plane spanned by these

two vectors and denote by Yb the orthogonal projection of Y onto Πb.

Proposition 8. Given Y ⊆ Rp convex and biases b1, b2 ∈ R
p linearly independent, the

following statements are equivalent:

(i) For the environment (Y,Y), there exists a (robust) fully revealing equilibrium that is

independent of the magnitudes of the biases.

(ii) For the environment (Yb,Yb), there exists a (robust) fully revealing equilibrium that is

independent of the magnitudes of the biases.

Proposition 8 says that for the existence in high-dimensional spaces of a FRE (robust

or not) that is independent of the magnitudes of the biases, it is necessary and sufficient to

look at the projection of the policy space onto the subspace of conflict of interest and see

whether a FRE can be constructed there. In particular, since the projection Yb of the policy

space onto Πb is a two-dimensional set, it is necessary and sufficient to check whether the

Local Deterrence Condition in Proposition 4 is satisfied when applied to Yb.30

29Similar logic underlies Proposition 10 in Section 5, which analyzes a two-sender setting in which the bias
vectors have directions that are uncertain and/or state-dependent.

30Note that the projection of a closed set onto a plane is not necessarily closed and hence Yb might not be
closed. Nevertheless, our proof shows that for any convex two-dimensional policy space, whether open or closed,
the Local Deterrence Condition in Proposition 4 remains necessary and sufficient for existence of a (robust) FRE
independent of the magnitudes of the biases. (This is true despite the fact that for an open two-dimensional policy
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The intuition behind Proposition 8 is that when the equilibrium is required to exist

regardless of the magnitudes of the biases, then no given shift of the receiver’s action in a

direction orthogonal to the plane of the biases can be certain to serve as a punishment for

a deviating sender. Therefore, to be sure that a deviation is punished, the receiver needs to

choose an action whose projection onto the plane of the biases is worse for both senders.

As in Proposition 4, the Min Rule for the receiver is helpful in constructing a robust

FRE that is independent of the magnitudes of the biases, whenever one exists. Given a

pair of reports (θ′, θ′′), let (θ′b, θ
′′
b ) denote their projections onto Πb. Proposition 8, coupled

with Proposition 4, implies that in the multi-dimensional environment (Y,Y), there exists a

(robust) FRE independent of the magnitudes of the biases if and only if, for all (θ′, θ′′) ∈ Y ,

θ′b ∧{b1,b2} θ
′′
b ∈ Yb. The condition θ′b ∧{b1,b2} θ

′′
b ∈ Yb means that there exists a feasible

policy in Y whose projection is θ′b ∧{b1,b2} θ
′′
b , and such a policy can serve as a punishment

for when θ′ , θ′′. Although the Min Rule applied to Yb does not uniquely identify a policy

for the receiver in Y , it does pin down the coordinates of the policy in the subspace where

the players’ interests conflict. Moreover, as θ′ and θ′′ converge to each other, the convexity

of Y implies that the set of policies in Y whose projection onto Πb is θ′b ∧{b1,b2} θ
′′
b contains

points close to θ′ and θ′′, thus ensuring that a robust punishment can be found.

Note that Proposition 5 does not extend to higher dimensions. It remains true that exis-

tence of a FRE that is independent of the magnitude of the biases is sufficient for existence

of a robust FRE when bias magnitudes have known finite upper bounds. However, it is

no longer necessary. If bias magnitudes had known finite upper bounds, then the receiver

might be able to utilize, for punishments, the dimensions of the policy space orthogonal to

the biases. For example, in this case, if the state space were unrestricted in a dimension

orthogonal to the plane of the biases, a robust FRE would always exist.

4 Non-Convex Policy Spaces

This section considers the case where the policy space is non-convex, for example because

of increasing returns to some resources or indivisibilities. We identify an additional geo-

metric condition, the Global Deterrence Condition, on the directions of the senders’ biases

relative to the frontier of the convex hull of the policy space, that together with the Local

Deterrence Condition identified in Proposition 4, is necessary and sufficient for existence

of a robust FRE that is independent of the magnitudes of the biases. The form of the Global

Deterrence Condition differs from that of the Local Deterrence Condition only in that the

frontier of the convex hull of the policy space Y replaces the frontier of Y itself.

When the policy space is non-convex, it is possible for the belief of the receiver to be

such that two or more policies are optimal. To see a simple example of this, consider a

policy space in which everything is feasible except policies that are within ε of zero, i.e.

Y = R2 \ B(0, ε). If the belief of the receiver is such that the expected state is 0, then any

space, local deviations can always be deterred with local punishments that are independent of the magnitudes of
the biases.)
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policy such that |y| = ε is optimal. In such a case, the restriction to pure strategies from the

receiver is not without loss of generality, and hence for this section we allow the receiver to

use mixed strategies.31

Before presenting our result, we need to generalize our definition of a smooth point on

the frontier as well as that of an inward normal vector to the frontier at a smooth point.32

Given an arbitrary set S , a point s ∈ Fr(S ) is a smooth point if locally there is a unique

tangent hyperplane to Fr(S ) at s, or more precisely, if there exists an ε > 0 such that, for

any 0 < δ < ε, B(s, δ) ∩ Fr(S ) has a unique tangent hyperplane at s. As before, we will

denote the set of smooth points on the frontier of S by F̃r(S ). The inward normal vector to

the frontier of S at a smooth point s, is then the normal vector to Fr(S ), nS (s), that satisfies

the condition that there exists an ε > 0 such that for any 0 < δ < ε, s + δnS (s) ∈ S . Lastly,

we denote by co(S ) the convex hull of set S .

Proposition 9. Suppose Y ⊆ R2 is compact and Fr(Y) has finitely many kinks. Given

b1, b2 ∈ R
2 linearly independent, the following statements are generically equivalent:

(i) There exists a robust fully revealing equilibrium that is independent of the magnitudes

of the biases.

(ii) 1. For every θ ∈ F̃r(co(Y)), nIn
co(Y)(θ) < C(b1, b2) (Global Deterrence Condition).

and

2. For every θ ∈ F̃r(Y), nIn
Y (θ) < C(b1, b2) (Local Deterrence Condition).

In the proof of the proposition we show that the Global Deterrence Condition (GDC)

and the Local Deterrence Condition (LDC) are together necessary and sufficient for the

existence of a robust FRE in pure strategies as long as there is not a very special sort of

kink point in the frontier of the policy space. At such a special kink point, the frontier is

locally non-convex, and on the two sides of the kink, it is locally linear; furthermore the

inward normal vectors to these linear pieces coincide with the bias vectors. If such a kink

point exists, then the GDC and LDC are not sufficient for the existence of a robust FRE

in pure strategies, but a robust FRE in which the receiver uses a mixed strategy does exist.

Finally, we argue that if a robust FRE in pure strategies does not exist, then generically,

allowing the receiver to use mixed strategies will not help in supporting a robust FRE.

The LDC by itself is necessary and sufficient for small deviations to be deterrable with

small punishments, whether the biases have known finite magnitudes or whether they can

be arbitrarily large.33 As we have mentioned before, when the receiver’s strategy is required

to be robust, the senders’ incentives to deviate from truthtelling depend only on the orien-

tations, not the magnitudes, of their biases. When Y is convex, the LDC is necessary and

31The extension of the robustness definition to mixed strategies is straightforward. Given the fully revealing
strategies (s1, s2), the receiver’s strategy σR is robust if for any θ ∈ Θ and any ε > 0, there exist δ > 0 and δ′ > 0
such that if: (i) θ′, θ′′ ∈ B(θ, δ) ∩ Θ, and (ii) y∗(θ′), y∗(θ′′) ∈ B(y∗(θ), δ′) ∩ Y , then for any policy y in the support of
σR(s1(θ′), s2(θ′′)), y ∈ B(y∗(θ), ε) ∩ Y .

32Recall that for a convex set S we defined an inward normal vector to a smooth point s ∈ F̃r(S ), as the only
vector nIn

S (s) such that nIn
S (s)(s′ − s) ≥ 0 for all s′ ∈ S . This definition does not apply to non-convex sets.

33Note that the set of smooth points F̃r(S ) might be empty. This is the case if the set S is finite for example. If
F̃r(S ) is empty, robustness does not impose any restriction.

29



sufficient for existence of a robust FRE, as Proposition 4 shows. When Y is non-convex,

however, deterrence of small deviations with small punishments is no longer sufficient for

existence of a FRE.

Figure 12a presents an example in which all local deviations can be deterred with lo-

cal punishments, because the LDC is satisfied. However, at points along the dashed line

connecting A to C, which is part of the frontier of co(Y), the GDC is violated. To see the

consequence of this violation, observe that if Sender 1 reports C and Sender 2 reports A,

and the magnitudes of the biases are very large, then there is no feasible response for the

receiver that would suffice to deter Sender 1, in state A, from deviating to a report of C, and

that would also deter Sender 2, in state C, from deviating to a report of A—any response

that would deter both of these deviations would have to lie in the punishment region rep-

resented by the shaded area. Hence, a FRE that is independent of the magnitudes of the

biases does not exist.

A

C

B

θ̃

θ

θ̂

nIn
co(Y)(θ̂)

nIn
Y (θ)

nIn
Y (θ̃)

Θ ≡ Y

b1

b1

b2

b2
D

E

(a) Small deviations can be deterred with small
punishments, but the large deviation (A,C) can-
not be deterred.

A

C

B

Θ ≡ Y

θ̃

θ

θ̂

b2

b2

b1

b1

nIn
Y (θ̃)

nIn
co(Y)(θ̂)

nIn
Y (θ)

(b) There exists a FRE that is independent of
the magnitudes of the biases, but small devia-
tions from θ cannot be deterred locally.

Figure 12: Conditions for Robustness of FRE for non-convex Y .

Figure 12a shows that when the policy space is non-convex, deterrence of local devi-

ations with local punishments no longer implies that all deviations are deterrable. In par-

ticular, in Proposition 3, condition (iii) no longer implies condition (i) if the assumption of

convexity of Y is dropped. For non-convex Y , whether or not large deviations are deterrable

depends in general on the magnitudes as well as the orientations of the biases. In particular,

in Figure 12a, if the magnitudes of the biases were sufficiently small, a robust FRE would

exist. (The receiver could punish incompatible reports with the Min Rule whenever it was

feasible and with point E whenever the Min Rule was not feasible.) Hence this example

also shows that, for non-convex Y , existence of a robust FRE that is independent of the

magnitudes of the biases is no longer implied by existence of a robust FRE for biases of

known finite magnitudes.

The GDC by itself is necessary and sufficient for all deviations, including large ones,

to be deterrable with feasible (though not necessarily robust) punishments, when the biases
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can be arbitrarily large. Figure 12b displays an example in which the GDC is satisfied,

so there exists a FRE that is independent of the magnitudes of the biases. For very large

magnitudes of the biases, point C is the least-preferred point in Y ≡ Θ for both senders, so it

can be used by the receiver to punish any discrepancies in the senders’ reports.34 However,

no robust FRE exists. To see why not, note that along segment AB on the frontier of Y ,

the LDC is violated; as a consequence, it is not possible to deter local deviations along

segment AB with local punishments. This example shows that in Proposition 3, condition

(i) no longer implies condition (iii) if the assumption of convexity is dropped.35

5 Uncertain and State-Dependent Biases

We can generalize the approach and results of the previous Section 3 to accommodate

some uncertainty about the directions of the senders’ biases. In particular, we can relax the

assumptions that the directions of the senders’ biases are (i) common knowledge and (ii)

independent of the realization of the state.

Suppose that the players have a common prior joint distribution G over (θ, b1, b2). Each

sender observes θ and his own bias vector, while the receiver does not observe any of these

realizations. The definition of a fully revealing equilibrium remains unchanged.

Proposition 10. Given Y ⊆ R2 convex, suppose that there exists a closed convex cone

C[b, b] = {αb + βb | α, β ≥ 0}, such that for all θ ∈ Θ, the supports of the conditional

distributions of the bias directions b1 and b2 given θ are both contained in C[b, b]. Then

conditions (i) and (ii) are equivalent and imply (iii):

(i) For all θ ∈ F̃r(Y), nIn
Y (θ) < C(b, b).

(ii) For all θ′, θ′′ ∈ Y, θ′ ∧
{b,b} θ

′′ ∈ Y.

(iii) There exists a (robust) fully revealing equilibrium that is independent of the magni-

tudes of the biases.

Moreover, if the conditional distribution of the bias directions (b1, b2) given θ assigns pos-

itive density to (b, b) for all θ ∈ Y, then (iii) implies (i) and (ii).

The sufficiency part of Proposition 10 says that when the receiver does not know the

actual biases but knows only that they are certain to lie in a given closed convex cone

C[b, b], then two equivalent sufficient conditions for the existence of a robust FRE that is

independent of the magnitudes of the biases are the Local Deterrence Condition and the

feasibility of the Min Rule, just as in Proposition 4, except that here the known biases

b1 and b2 are replaced by the least aligned possible realizations, b and b. Each of these

34 To be more precise, for all θ ∈ Y , biC ≤ biθ for i = 1, 2. To see that C serves as a punishment for all deviations,
even for senders with small biases, note that biC ≤ biθ implies that |θ + bi − C|2 = |bi|

2 + |θ − C|2 + 2bi(θ − C) >
|bi|

2 = |θ + bi − θ|
2. In other words, for both senders, C is farther from θ + bi than θ is, and hence neither sender has

an incentive to deviate from truthfully reporting θ.
35Of course, regardless of whether or not Y is convex, condition (ii) of Proposition 3 implies both (i) and (iii).
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conditions ensures that for all true states on the frontier of Y , the receiver can find local

punishments that would deter local deviations, whether the realized values of (b1, b2) were

(b, b) or (b, b). (Recall that the Min Rule is an anonymous rule.) This in turn implies that

for any more closely aligned realizations of the biases, local deviations would continue to

be deterred by these same local punishments, as illustrated in Figure 13a for the funding

allocation game.

b

bθ′′

θ′

θ′ ∧
{b,b} θ

′′

b1

b2

θ′ ∧{b1,b2} θ
′′

(a) Funding allocation game when the senders’
uncertain biases have support within C[b, b].

b1(θ)

b

b2(θ)

b

θ

y1

y2

(b) Funding allocation game when the senders
have state-independent preferences: y1, y2 rep-
resent their ideal points.

Figure 13: Funding allocation game when the biases are uncertain and/or state-dependent.

The necessity part of Proposition 10 shows that if there exists a minimal closed convex

cone containing the biases and this minimal cone is the same for all states θ, then these

sufficient conditions are also necessary. The necessity part of the proposition holds, for

example, if the distribution of the biases, on the support C[b, b], is independent of the

realization of the state.

The sufficiency result of Proposition 10 can also be applied to cases in which the biases

are determinitic but depend on the realization of the state. Consider, for example, the same

funding allocation setting as in Figure 13a, and now suppose senders S 1 and S 2 have fixed

ideal points, y1 and y2, independent of the realization of the state. Such state-independent

quadratic preferences can expressed as follows:

uS i(y, θ) = −(y − yi)2 = −(y − θ − (yi − θ)︸  ︷︷  ︸
b1(θ)

)2

Therefore these preferences correspond to each sender S i having a deterministic state-

dependent bias bi(θ) = (yi − θ). (See Figure 13b.) If these biases lie within a closed convex

cone C[b, b], and no inward normal vector to a smooth point on the frontier lies within the

cone, then it follows from Proposition 10 that there exists a robust FRE. Furthermore, it can

be implemented by the receiver using the Min Rule defined with respect to the biases {b, b}.

Finally, to conclude our analysis, note that the sufficiency result of Proposition 10 can be

easily extended to general convex preferences, using a similar argument to the case of state-

dependent biases. Suppose for simplicity that Θ ≡ Y , with Y ⊆ R2 and convex. Denote by
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uR(y, θ) the quasi-concave utility function representing the receiver’s preferences, such that

θ = arg maxy∈Y uR(y, θ), that is, the ideal policy of the receiver in state θ is y = θ. Denote by

uS i(y, θ) the quasi-concave utility function of sender S i. For every realization of the state

θ ∈ Y , define the bias vector of S i as the normal vector to S i’s indifference curve through the

policy y = θ, in state θ.36 Now suppose that there exists a closed convex cone C[b, b] such

that for both senders, bi(θ) ∈ C[b, b] for all θ ∈ Y . Then if the Local Deterrence Condition

is satisfied for the pair of biases {b, b}, there exists a robust FRE that can be implemented

using the Min Rule defined with respect to {b, b}. Figure 14 illustrates the intuition.

h(b1(θ′′), b1(θ′′)θ′′)

b1(θ′′)

θ′′

h(b2(θ′), b2(θ′)θ′)

b2(θ′)

θ′

b

b

θ′ ∧
{b,b} θ

′′

Figure 14: Quasi-concave utilities and Y ⊆ R2, convex. In state θ′′, S 1 would prefer a policy in the direction
of b1(θ′′), and hence would be punished for deviating by the receiver choosing a policy to the south-west of
h(b1(θ′′), b1(θ′′)θ′′). Analogously, in state θ′, S 2 would be punished for deviating by the receiver choosing
a policy to the south of h(b2(θ′), b2(θ′)θ′). The grey area represents the punishment region for the deviation
(θ′, θ′′). The Min Rule, defined for {b, b}, delivers a policy that lies in the punishment region.

36More formally, S i’s bias in state θ, bi(θ), is defined as the gradient vector, with respect to y, to the indifference
curve of S i at the policy y = θ.
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A Appendix

Proof of Lemma 1:

Consider a robust fully revealing equilibrium (s1, s2, yR) supported by the belief func-

tion µ(·) and consider the following strategies: s̃i : Θ −→ Y , such that s̃i(θ) = y∗(θ);

ỹ : Y × Y −→ Y , such that ỹ(y′, y′′) = yR(s1(y′), s2(y′′)) and the belief function µ̃(y′, y′′) =

µ(s1(y′), s2(y′′)). We show that the restriction of (s̃1, s̃2, ỹ) to the environment (Y,Y) is a

robust truthful equilibrium. An argument identical to the one in the proof of Proposition

2-((ii) ⇒ (i)) shows that in fact (s̃1, s̃2, ỹ) is also a robust truthful equilibrium in the envi-

ronment (Θ,Y). Consider the report (θ′, θ′′) with θ′ , θ′′, θ′, θ′′ ∈ Y . Then:

|ỹ(θ′, θ′′) − (θ′′ + b1)| = |yR(s1(θ′), s2(θ′′)) − (θ′′ + b1)| ≤ |b1|

|ỹ(θ′, θ′′) − (θ′ + b2)| = |yR(s1(θ′), s2(θ′′)) − (θ′ + b2)| ≤ |b2|

where the inequality follows from the fact that (s1, s2, yR) is an equilibrium. Finally, if θ ∈ Y

and ε > 0, by the robustness of (s1, s2, yR) there exists a δ > 0 such that if θ′, θ′′ ∈ B(θ, δ),

ỹ(θ′, θ′′) = yR(s1(θ′), s2(θ′′)) ∈ B(θ, ε).

hence (s̃1, s̃2, ỹ) is a robust truthful equilibrium.

Proof of Proposition 1:

Statement (i)-sufficiency (⇒): Suppose there exist θ′, θ′′ ∈ Y such that Y ⊆ H(b1, b1θ
′′) ∪

H(b2, b2θ
′). Then y(s1(θ′), s2(θ′′)) ∈ H(b1, b1θ

′′) ∪ H(b2, b2θ
′). In particular, denoting

y ≡ y(s1(θ′), s2(θ′′)), either b1(y − θ′′) > 0 or b2(y − θ′) > 0. Suppose that b1(y − θ′′) > 0

and consider t1 >
|y−θ′′ |2

2b1·(y−θ′′)
. Then y(s1(θ′), s2(θ′′)) ∈ B(θ′′ + t1b1, t1|b1|) which implies

that sender 1 with bias t1b1 has an incentive to deviate to s1(θ′) given θ′′. The symmetric

argument could be made if b2(y − θ′) > 0 with t2 >
|y−θ′ |2

2b2·(y−θ′)
.

Statement (i), necessity (⇐): Consider truthful strategies and the following belief function

µ(·) such that µ(θ, θ) allocates mass one on θ and µ(θ′, θ′′) with θ′ , θ′′, puts mass one in an

element of Y \ H(b1, b1θ
′′) ∪ H(b2, b2θ

′). Denote yR the optimal response by the receiver

given those beliefs. Given a report (θ′, θ′′), yR(θ′, θ′′) < H(b1, b1θ
′′) ∪ H(b2, b2θ

′) so in

particular yR(θ′, θ′′) < B(θ′′+ t1b1, t1|b1|) and yR(θ′, θ′′) < B(θ′+ t2b2, t2|b2|). So none of the

two senders has an incentive to deviate.

Statement (ii)-sufficiency (⇒): Suppose there exist some fully revealing strategies (s1, s2)

and a strategy yR that deters local deviation with local punishments, then for any θ ∈ Y

and any ε > 0 there exists δ > 0 such that for every θ′, θ′′ ∈ B(θ, δ), yR(s1(θ′), s2(θ′′)) ∈

B(θ, ε)∩ Y \ (B(θ′ + t1b1, t1|b1|) ∪ B(θ + t2b2, t2|b2|)) for any t1, t2 ≥ 0. Hence B(θ, ε)∩ Y *

H(b1, b1θ
′′) ∪ H(b2, b2θ

′).

Statement (ii), necessity (⇐): By the argument used in the proof of Lemma 1 we can focus

on truthful strategies. For any θ ∈ Θ define yR(θ, θ) = θ. If θ , θ′ ∈ Θ define yR(θ, θ′)
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an element of arg min{|s − θ| : s ∈ Y \ (H(b1, b1θ
′) ∪ H(b2, b2θ))} if Y * H(b1, b1θ

′) ∪

H(b2, b2θ), and any arbitrary feasible policy if Y ⊆ H(b1, b1θ
′) ∪ H(b2, b2θ). To see that

this strategy deters local deviation with local punishments consider any θ ∈ Θ and any

ε > 0, by hypothesis, for ε̃ = ε/3 there exists 0 < δ < ε̃ such that for all θ′, θ′′ ∈ B(θ, δ)∩Y ,

B(θ, ε̃) ∩ Y * H(b1, b1θ
′′) ∪ H(b2, b2θ

′). Consider any θ̂ ∈ B(θ, ε̃) ∩ Y * H(b1, b1θ
′′) ∪

H(b2, b2θ
′). And |yR(θ′, θ′′) − θ| ≤ |yR(θ′, θ′′) − θ′| + |θ′ − θ| ≤ |θ̂ − θ′| + |θ′ − θ| ≤ |θ̂ −

θ| + 2|θ′ − θ| < 3ε̃ = ε, hence yR(θ′, θ′′) ∈ B(θ, ε) \ (H(b1, b1θ
′′) ∪ H(b2, b2θ

′)) ⊂ B(θ, ε) \

(B(θ′′ + t1b1, t1|b1|) ∪ B(θ′ + t2b2, t2|b2|).

Statement (iii): The necessity is given by parts (i) and (ii). To see the sufficiency, con-

sider truthful strategies and the belief specified in the previous paragraph. Note that given

condition (2), Y \ (H(b1, b1θ
′) ∪ H(b2, b2θ)) , ∅ for any θ , θ′ ∈ Y . �

Proof of Proposition 2:

Statement (i) ⇒ Statement (ii): Given b1, b2 ∈ R
P and the environment (Θ,Y), consider

(s1, s2, yR) a pure (robust) FRE independent of the magnitudes of the biases supported by

the belief function µ. Denote s̃i : Y −→ Mi the restriction of S i’s strategy to the policy

space Y . Then (s̃1, s̃2, yR) together with the belief µ constitute a (robust) FRE independent

of the magnitudes of the biases for the environment (Y,Y). In particular, given Proposition

1, for all θ′, θ′′ ∈ Y , Y * H(b1, b1θ
′′)∪H(b2, b2θ

′). Note the this last statement is equivalent

to Y * H(bY
1 , b

Y
1 θ
′′) ∪ H(bY

2 , b
Y
2 θ
′), and hence by Proposition 1, there exists a (robust) FRE

for all biases (t1bY
1 , t2bY

2 ), t1, t2 ≥ 0 for the environment (Y,Y).

Statement (ii) ⇒ Statement (i): Suppose there exists a (robust) FRE in (Y,Y) for all bi-

ases (t1bY
1 , t2bY

2 ), t1, t2 ≥ 0. By Lemma 1, there exists a truthful (robust) equilibrium

outcome-equivalent to it. Denote the truthful equilibrium by (s1, s2, yR) where for all θ ∈ Y ,

si(θ) = y∗(θ) = θ. For θ ∈ Θ we define the following strategies: s̃i(θ) = y∗(θ). We claim that

(s̃1, s̃2, yR) is a (robust) FRE in (Θ,Y).

Consider the out-of-equilibrium messages (y′, y′′) where y′ , y′′ and denote by x =

yR(y′, y′′) the receiver’s policy after the report (y′, y′′). By Proposition 1,

bY
1 (y′′ − x) ≥ 0, bY

2 (y′ − x) ≥ 0. (3)

For sender S 1, we need to show that for any θ ∈ Θ such that y∗(θ) = y′′, |θ + tb1 − y′′| ≤

|θ + tb1 − x| for all t > 0. For any θ ∈ Θ with y∗(θ) = y′′, y′′ is the closest point in Y

to θ and therefore |θ − y′′| ≤ |θ − x|. In particular, if z is the midpoint of the segment

[x, y′′], θ ∈ H(y′′ − x, z(y′′ − x)) or analogously, θ(y′′ − x) ≥ z(y′′ − x). Note that since

y′′, x ∈ Y , y′′ − x ∈ S Y and hence b1(y′′ − x) = bY
1 (y′′ − x) ≥ 0 where the last inequality

follows by (3). Therefore (θ + tb1)(y′′ − x) ≥ z(y′′ − x) for all t > 0, or in other words

|θ+ tb1− y′′| ≤ |θ+ tb1− x| for all t > 0. A similar argument for S 2 shows that for any θ ∈ Θ

such that y∗(θ) = y′, |θ + tb2 − y′| ≤ |θ + tb2 − x| for all t > 0. Therefore (s̃1, s̃2, yR) is a FRE

in (Θ,Y). (See Figure 15.)

Finally if we further assume that the initial equilibrium (s1, s2, yR) is robust, then by Propo-
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y′′

x = yR(y′, y′′)

θ

θ + tb1 b1

b1

Figure 15:

sition 1, for any y ∈ Y and ε > 0, there exists δ > 0 such that for all y′, y′′ ∈ B(y, δ) ∩ Y ,

yR(y′, y′′) ∈ B(y, ε). In particular, for any θ ∈ Θ and θ′, θ′′ ∈ Θ such that y∗(θ′), y∗(θ′′) ∈

B(y∗(θ), δ), we have that yR(y∗(θ′), y∗(θ′′)) ∈ B(y∗(θ), ε). �

Proof of Proposition 3:

By Proposition 2, we can restrict attention to the case in which Θ ≡ Y .

Statement (ii)⇒ Statement (i): Trivial.

Statement (i) ⇒ Statement (ii): We argue in two steps. First, we prove that if a local

deviation from θ ∈ Y cannot be deterred with a local punishment, then there exists ε > 0

such that

B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪ H(b2, b2θ)

where S denotes the closure of S . Note that this statement is independent of whether Y

is convex or not. Second, we use the first result and the convexity of Y to show that if a

local deviation cannot be deterred with a local punishment, it cannot be deterred with any

punishment and hence a fully revealing equilibrium does not exist.

Step 1: If local deviations from θ ∈ Y cannot be deterred with local actions then by

Proposition 1 there exists ε > 0 such that for every δ > 0 there exist θ′δ, θ
′′
δ ∈ B(θ, δ) ∩

Y such that B(θ, ε) ∩ Y ⊆ H(b1, b1θ
′′
δ ) ∪ H(b2, b2θ

′
δ). We show that for that same ε,

B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪ H(b2, b2θ). Suppose that B(θ, ε) ∩ Y * H(b1, b1θ) ∪ H(b2, b2θ).

Then there exists θ̃ ∈ B(θ, ε) ∩ Y , such that b1θ̃ < b1θ and b2θ̃ < b2θ. Define δ̃ =

min{ |b1(θ−θ̃)|
|b1 |

, |b2(θ−θ̃)|
|b2 |
} and denote θ̃′, θ̃′′ ∈ B(θ, δ̃) the corresponding θ′

δ̃
and θ′′

δ̃
such that

B(θ, ε)∩Y ⊆ H(b1, b1θ̃
′′)∪H(b2, b2θ̃

′). But by the definition of δ̃, b1θ̃ < b1θ̃′′ and b2θ̃ < b2θ̃
′

and hence θ̃ ∈ B(θ, ε)∩Y \
(
H(b1, b1θ̃

′′) ∪ H(b2, b2θ̃
′)
)

which is a contradiction. See Figure

16.

Step 2: Suppose that local deviations from θ ∈ Y cannot be deterred with a local punish-

ment. By Step 1 there exists ε > 0 such that B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪ H(b2, b2θ). Define

θ′ ∈ arg min{b2θ̃ | θ̃ ∈ B(θ, ε) ∩ Y} and θ′′ ∈ arg min{b1θ̃ | θ̃ ∈ B(θ, ε) ∩ Y}. Clearly

B(θ, ε)∩Y ⊂ H(b1, b1θ
′′)∪H(b2, b2θ

′) and hence either b1θ > b1θ
′′ or b2θ > b2θ

′. Without
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θ̃

|b1(θ−θ̃)|
|b1 |
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Θ ≡ Y

Figure 16:

loss of generality assume that b1θ > b1θ
′′. We show now that the deviation {θ′, θ′′} cannot

be deterred in Y . (See Figure 17.)

h(b2, b2θ
′)

h(b2, b2θ)

b2

θ

B(θ, ε)

h(b1, b1θ
′′)

h(b1, b1θ)

b1

θ′ θ′′

θ̂

Θ ≡ Y

Figure 17: Every fully revealing equilibrium is robust: if a local deviation cannot be deterred with a local
punishment, it cannot be deterred with any punishment.

Suppose there exists θ̂ ∈ Y such that b1θ̂ ≤ b1θ
′′ < b1θ and b2θ̂ ≤ b2θ

′ ≤ b2θ. Below we

prove that b2θ̂ < b2θ. As a consequence, by the convexity of Y there exists a λ ∈ (0, 1) such

that λθ̂ + (1 − λ)θ ∈ B(θ, ε) ∩ Y and b1(λθ̂ + (1 − λ)θ) < b1θ, b2(λθ̂ + (1 − λ)θ) < b2θ which

contradicts that B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪ H(b2, b2θ).

To see that b2θ̂ < b2θ, suppose b2θ̂ = b2θ = b2θ
′ = min{b2θ̃ | θ̃ ∈ B(θ, ε) ∩ Y} (See

Figure 18). Since local deviations from θ cannot be deterred, by Proposition 1 there exists

an ε̃ > 0 such that for any δ > 0 there exists θ′δ, θ
′′
δ ∈ B(θ, δ) ∩ Y such that B(θ, ε̃) ∩ Y ⊂

H(b1, b1θ
′′
δ ) ∪ H(b2, b2θ

′
δ). Consider δ < min{ε, ε̃ |b1n2 |

|b1 |
}, where n2 is the unit normal vector

to b2 such that b1n2 < 0. In particular, since δ < ε̃ |b1n2 |
|b1 |

, b1θ
′′
δ > b1(θ + ε̃n2) and hence there

exists µ ∈ (0, 1) such that µθ̂+(1−µ)θ ∈ B(θ, ε̃)∩Y and b1θ
′′
δ > b1(µθ̂+(1−µ)θ). Moreover,

since δ < ε and b2θ̂ = b2θ = b2θ
′ = min{b2θ̃ | θ̃ ∈ B(θ, ε) ∩ Y}, b2(µθ̂ + (1 − µ)θ) ≤ b2θ

′
δ.

But this contradicts that B(θ, ε̃) ∩ Y ⊂ H(b1, b1θ
′′
δ ) ∪ H(b2, b2θ

′
δ).
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θ′′δ
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µθ̂ + (1 − µ)θ

Figure 18:

Statement (ii)⇒ Statement (iii): Trivial.

Statement (iii)⇒ Statement (i): Suppose there exists θ′, θ′′ ∈ Y such that Y ⊆ H(b1, b1θ
′′)∪

H(b2, b2θ
′). Then h(b1, b1θ

′′) ∩ h(b2, b2θ
′) ∩ Y = ∅ and for Y compact or Y ⊆ R2, there

exist37

θ̃′ ∈ arg miny{b1y | y ∈ Y, b2y = b2θ
′} and

θ̃′′ ∈ arg miny{b2y | y ∈ Y, b1y = b1θ
′′}.

Note that H(b1, b1θ̃
′′)∪H(b2, b2θ̃

′) = H(b1, b1θ
′′)∪H(b2, b2θ

′) and hence Y ⊆ H(b1, b1θ̃
′′)∪

H(b2, b2θ̃
′). We show that for any λ ∈ (0, 1), Y ⊆ H(b1, b1(λθ̃′ + (1 − λ)θ̃′′)) ∪ H(b2, b2θ̃

′)

and therefore given θ̃′, for every δ > 0 there exists a λ ∈ (0, 1) such that λθ̃′ + (1 − λ)θ̃′′ ∈

B(θ̃′, δ) ∩ Y and

Y ⊆ H(b1, b1(λθ̃′ + (1 − λ)θ̃′′)) ∪ H(b2, b2θ̃
′)

and hence a local deviation from θ̃′ cannot be deterred38. See Figure 19.

Suppose that there exists λ ∈ (0, 1) and θ̂ ∈ Y such that θ̂ < H(b1, b1(λθ̃′ + (1 − λ)θ̃′′)) ∪

H(b2, b2θ̃
′). Since θ̂ ∈ H(b1, b1θ̃

′′) ∪ H(b2, b2θ̃
′),

θ̂ ∈ H(b1, b1θ̃
′′)

θ̂ < H(b2, b2θ̃
′)

θ̂ < H(b1, b1(λθ̃′ + (1 − λ)θ̃′′))

Moreover since θ̃′, θ̃′′ ∈ Y ⊆ H(b1, b1θ̃
′′) ∪ H(b2, b2θ̃

′), b2θ̃
′ < b2θ̃

′′ and b1θ̃
′′ < b1θ̃

′.

37If Y is compact then the minimum is reached within the set. This is also the case if Y ⊆ R2 because h(b1, b1θ
′′)∩

h(b2, b2θ
′) ∩ Y = ∅ implies that the sets Y ∩ h(b2, b2θ

′) and Y ∩ h(b1, b1θ
′′) are closed, bounded (from below) half-

lines and hence they have a minimum. For general Y ⊆ Rp, even if Y∩h(bi, biθ) is closed and bounded from below,
it might be the case that the minimum is never reached.

38Note that for any ε > 0, B(θ̃′, ε)∩Y ⊆ Y ⊆ H(b1, b1(λθ̃′ + (1−λ)θ̃′′))∪H(b2, b2θ̃
′), and hence local deviations

from θ̃′ cannot be deterred with local punishments.
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Putting all the inequalities together we find that

b2θ̂ ≤ b2θ̃
′ < b2θ̃

′′ (4)

b1θ̃
′′ < b1θ̂ < b1θ̃

′ (5)

By (4) there exists µ ∈ (0, 1] such that b2(µθ̂+ (1− µ)θ̃′′) = b2θ̃
′ and by convexity µθ̂+ (1−

µ)θ̃′′ ∈ Y . But by (5), b1(µθ̂ + (1 − µ)θ̃′′) < b1θ̂ < b1θ̃
′ which contradicts the definition of

θ̃′. �

Θ ≡ Y

θ′

θ′′

θ̃′ θ̃′′

θ̂

h(b2, b2θ
′)

b2

h(b1, b1θ
′′)

b1

µθ̂ + (1 − µ)θ̃′′

λθ̃′ + (1 − λ)θ̃′′

Figure 19: In R2, if a deviation cannot be deterred, there is a local deviation that cannot be deterred with
local actions.

Proof of Proposition 4:

By Proposition 2, we can restrict attention to the case Θ ≡ Y .

Statement (i)⇒ Statement (ii): Suppose there exists θ ∈ F̃r(θ) such that nIn
Y (θ) ∈ C(b1, b2).

Then Y ⊂ H̄(b1, b1θ) ∪ H̄(b2, b2θ). Moreover, since nIn
Y (θ) , b1 and nIn

Y (θ) , b2, for any

δ > 0 there exists θ′ ∈ Y ∩B(θ, δ) and θ′′ ∈ Y ∩B(θ, δ) such that b2θ
′ < b2θ and b1θ

′′ < b1θ.

But then Y ⊂ H̄(b1, b1θ)∪ H̄(b2, b2θ) ⊂ H(b1, b1θ
′′)∪H(b2, b2θ

′) and local deviations from

θ cannot be deterred, which contradicts (i).

Statement (ii)⇒ Statement (iii): Suppose that there exist θ′, θ′′ ∈ Y such that x ≡ θ′∧{b1,b2}

θ′′ < Y . In particular θ′ ∧{b1,b2} θ
′′ < {θ′, θ′′}. Without loss of generality assume that

b1x = b1θ
′′ and b2x = b2θ

′. Consider any θ̃ ∈ F̃r(Y) that lies in the interior of the triangle

formed by θ′, θ′′ and x.39 See Figure 20. In particular, since Y is convex, h(nY (θ̃), nY (θ̃)θ̃)

is a hyperplane separating Y from x, and

nY (θ̃)(θ′ − θ̃) ≥ 0 (6)

nY (θ̃)(θ′′ − θ̃) ≥ 0 (7)

nY (θ̃)(x − θ̃) < 0. (8)

39Note that Fr(Y) has at most a countable number of kinks. Since Y is convex, Fr(Y) is locally the graph of a
concave (convex) function and hence the derivative of this function is monotonic, and it has at most a countable
number of jumps.
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Moreover, since b1, b2 span R2 there exists α, β ∈ R such that nY (θ̃) = αb1 + βb2. Sub-

stituting this into equations (6), (7), (8), and then substracting (8) from (6) and (7), we

obtain

0 < αb1(θ′ − x) − βb2(θ′ − x) = αb1(θ′ − θ′′) (9)

0 < αb1(θ′′ − x) − βb2(θ′′ − x) = βb2(θ′′ − θ′), (10)

where the equalities follow by the definition of x. And given that b1θ
′ > b1θ

′′ and b2θ
′ <

b2θ
′′, (9) and (10) imply α > 0 and β > 0, respectively. Hence nY (θ̃) ∈ C(b1, b2), which

contradicts (ii).

x ≡ θ′ ∧{b1,b2} θ
′′

θ′

θ′′

nY(θ̃)

θ̃

Θ ≡ Y
b1

h(b1, b1θ
′′)

b2

h(b2, b2θ
′)

Figure 20: Relationship between the Local Deterrence Condition and the Min Rule

Statement (iii) ⇒ Statement (i): Suppose that for all θ′, θ′′ ∈ Y , y ≡ θ′ ∧{b1,b2} θ
′′ ∈ Y .

By the definition of θ′ ∧{b1,b2} θ
′′, b1y ≤ b1θ

′′ and b2y ≤ b2θ
′. Therefore y < H(b1, b1θ

′′) ∪

H(b2, b2θ
′) and it is a punishment for the deviation (θ′, θ′′) for arbitrarily large biases.

Moreover as θ′, θ′′ converge to a point θ, y = θ′ ∧{b1,b2} θ
′′ also converges to θ and the

equilibrium is robust. �

Proof of Proposition 5:

Statement (ii)⇒ Statement (i): Trivial.

Statement (i)⇒ Statement (ii): We show that (i) implies the LDC of Proposition 4 which

is equivalent to (ii). Suppose there exists θ ∈ F̃r(Y) such that nY (θ) ∈ C(b1, b2). Since Y is

convex Y ⊆ H(nY (θ), nY (θ)θ). We can find ε > 0 such that

B(θ, ε) ∩ H(nY (θ), nY (θ)θ) ⊂ B(θ + b1/2, |b1|/2) ∪ B(θ + b2/2, |b2|/2) (11)

More precisely, if we denote by t(θ) a unit normal vector to nY (θ), any 0 < ε ≤

min{|b1t(θ)|, |b2t(θ)|,
√
|b1 |2 |b2 |2−(b1·b2)2

(b1−b2)2 } will satisfy (11).40 See Figure 21.

40The last number in this minimum corresponds to the length of the common chord of the two balls. It is derived
using standard trigonometry.
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|b2t(θ)|
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B(θ + b1/2, |b1|/2)

|b1t(θ)|

√
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(b1−b2)2

B(θ, ε)

Figure 21: Robustness implies the Local Deterrence Condition.

Moreover, for any δ > 0,

B(θ − b1/2, |b1|/2) ∩ Y ∩ B(θ, δ) , ∅

B(θ − b2/2, |b2|/2) ∩ Y ∩ B(θ, δ) , ∅

Consider ε̃ = min{ε, |b1|/2, |b2|/2}. Then for any δ > 0 consider θ′ an arbitrary element of

B(θ−b2/2, |b2|/2)∩Y∩B(θ, δ) and θ′′ an arbitrary element of B(θ−b1/2, |b1|/2)∩Y∩B(θ, δ).

In what follows, we show that B(θ, ε̃)∩Y ⊂ B(θ′′+b1, |b1|)∪B(θ′+b2, |b2|) and hence local

deviations from θ cannot be deterred locally.

Consider θ̃ ∈ B(θ, ε̃) ∩ Y , then since ε̃ ≤ ε, θ̃ ∈ B(θ + b1/2, |b1|/2) ∪ B(θ + b2/2, |b2|/2).

Suppose θ̃ ∈ B(θ + b1/2, |b1|/2), then

|θ̃ − (θ′′ + b1)| ≤ |θ̃ − (θ +
b1

2
)| + |θ −

b1

2
− θ′′| <

|b1|

2
+
|b1|

2
= |b1|

which implies that θ̃ ∈ B(θ′′ + b1, |b1|). The case θ̃ ∈ B(θ + b2/2, |b2|/2) is analogous. �

Proof of Proposition 6:

Proposition 6 would be simple to prove if the receiver always used an anonymous rule.

In that case, for any deviation from the collusive agreement θ̂, no matter which sender

deviated, the receiver’s response y would satisfy both b1y ≤ b1θ̂ and b2y ≤ b2θ̂, so it would

follow that y = y ∧{b1,b2} θ̂. But then any policy inducible by a deviating sender in the FRE

supported by an (arbitrary) anonymous rule would also be inducible in the FRE supported

by the Min Rule. The proof that follows allows for the possibility that the receiver uses a

non-anonymous rule.

If the FRE supported by the Min Rule is not collusion-proof, there exists a state θ and

a collusive agreement θ̂ (weakly preferred by both senders to θ), such that neither sender

could gain by unilaterally deviating from the agreement. In other words, for any possible

deviation θ̃ , θ̂, both senders weakly prefer θ̂ to θ̂ ∧{b1,b2} θ̃ in state θ.

Consider a FRE that is independent of the magnitudes of the biases but supported by a

strategy for the receiver that is different from the Min Rule. We show that for the same state

θ, the same collusive agreement θ̂ is self-enforcing. Figure 22 illustrates the argument. We
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proceed by contradiction. Suppose, without loss of generality, that sender S 1 can deviate

from the agreement and induce a policy y that he prefers to θ̂, that is, a policy y ∈ B(θ +

b1, |θ + b1 − θ̂|) ∩ Y . Since θ̂ is weakly preferred to θ by S 1, |θ + b1 − θ̂| ≤ |b1|, and for

any point z ∈ B(θ + b1, |θ + b1 − θ̂|), b1θ < b1z. In particular, b1θ < b1y. Moreover, since

the FRE is independent of the magnitudes of the biases, any policy y that S 1 can induce by

deviating from θ̂ must satisfy b1y ≤ b1θ̂. Therefore,

b1θ < b1y ≤ b1θ̂. (12)

θ

B(θ + b1, |θ + b1 − θ̂|)

θ + b1θ

θ̂

θ ∧ θ̂

y

y′

x
x′

h(b2, b2θ̂)

b2

b1

Figure 22: If y′ ≡ y ∧ θ̂ < B(θ + b1, |θ + b1 − θ̂|), then y′ ∈ B(θ + b2, |θ + b2 − θ̂|)

Consider now the policy y′ ≡ y ∧{b1,b2} θ̂. Note that y′ is a feasible policy, because both

y and θ̂ are in Y , and the existence of a FRE that is independent of the magnitudes of the

biases implies, by Proposition 4, that y ∧{b1,b2} θ̂ ∈ Y . We consider the following two cases

and show that each of them leads to a contradiction.

Case 1: y′ ∈ B(θ + b1, |θ + b1 − θ̂|). In this case S 1, in the FRE supported by the Min

Rule, could have profitably deviated from the collusive agreement θ̂ by reporting y and thus

inducing y′. This contradicts the hypothesis.

Case 2: y′ < B(θ + b1, |θ + b1 − θ̂|). The rest of the proof shows that in this case, in the FRE

supported by the Min Rule, sender S 2 could have profitably deviated from the collusive

agreement θ̂ by reporting y and thus inducing y′, again contradicting the hypothesis.

The first step is to note that y′ < B(θ + b1, |θ + b1 − θ̂|) implies that b2θ̂ < b2y, since

otherwise we would have y ∧{b1,b2} θ̂ = y ∈ B(θ + b1, |θ + b1 − θ̂|), and hence, in the FRE

supported by the Min Rule, S 1 could have profitably deviated from the collusive agreement

θ̂ by reporting y.

Now b2θ̂ < b2y implies that b2y′ = b2(y ∧{b1,b2} θ̂) = b2θ̂, so y′ ∈ h(b2, b2θ̂). Moreover,

given that θ̂ is also weakly preferred to θ by S 2, it must be that b2θ < b2θ̂.

Now denote by x the projection of θ onto h(b2, b2θ̂). Our goal is to prove that y′ lies in

between θ̂ and x on h(b2, b2θ̂). From this it will follow, since x is the point that, in state θ,

S 2 prefers out of all the points in h(b2, b2θ̂), that S 2 prefers y′ to θ̂.
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Let θ denote the point in B̄(θ+ b1, |θ+ b1 − θ̂|) with the lowest inner product with b1, i.e.

θ = θ+(1−|θ+b1− θ̂|)b1. We now show, by contradiction, that b2θ̂ < b2θ. If it were the case

that b2θ ≤ b2θ̂, then the point θ̆ ≡ arg min{b1ỹ | ỹ ∈ B̄(θ + b1, |θ + b1 − θ̂|), b2ỹ ≥ b2θ̂} would

satisfy b2θ̆ = b2θ̂. In other words, for the policy space Ỹ ≡ B̄(θ+b1, |θ+b1− θ̂|)∩ H̄(b2, b2θ̂),

there would exist a FRE that was independent of the magnitudes of the biases, in which any

incompatible reports were punished by θ̆. But Proposition 4 would then imply that for the

policy space Ỹ , the Min Rule would always be feasible. In particular, since b2θ̂ < b2y,

y ∈ Ỹ , so it would follow that y′ = y ∧{b1,b2} θ̂ ∈ Ỹ . Furthermore, since b2y′ = b2θ̂ and

b1θ̆ < b1y = b1y′, we would in fact have that y′ ∈ B(θ + b1, |θ + b1 − θ̂|) ∩ h(b2, b2θ̂) ⊂

B(θ+ b1, |θ+ b1 − θ̂|). But this would contradict the hypothesis in Case 2. Hence b2θ̂ < b2θ.

Summing up, we have the following inequalities:

b2θ < b2θ̂ < b2θ. (13)

Note that by the definition of θ and (12) we had

b1θ < b1θ < b1θ̂. (14)

In particular, h(b2, b2θ̂) has to intersect the segment [θ, θ] at some interior point x′, and x (the

projection of θ onto h(b2, b2θ̂)) must satisfy b1x < b1x′ < b1(θ∧{b1,b2} θ̂) ≤ b1y′ ≤ b1θ̂. From

this it follows that y′ ∈ [x, θ̂] (see Figure 22). Finally, since in state θ, x is S 2’s preferred

point on h(b2, b2θ̂), the quasi-concavity of preferences implies that S 2 prefers y′ to θ̂. But

then, in the FRE supported by the Min Rule, in state θ S 2 could have profitably deviated

from the collusive agreement θ̂, by reporting y and thus inducing y′. This contradicts our

hypothesis.

Since we have shown that both Case 1 and Case 2 lead to a contradiction, the proof is

concluded.

Proof of Proposition 7:

We introduce some notation that will be used in the proof. Given a close convex set S ⊂ R2

and a point θ̂ ∈ Fr(S ), we denote by t+S (θ̂), t−S (θ̂) the two unit tangent vectors to S at θ̂ such

that C[t+S (θ̂), t−S (θ̂)] is the smallest cone with vertex θ̂ that contains S , i.e.,

(i) S ⊆ {y = θ̂ + v | v ∈ C[t+S (θ̂), t−S (θ̂)]}

(ii) for any cone C such that S ⊆ {y = θ̂ + v | v ∈ C} we have that C[t+S (θ̂), t−S (θ̂)] ⊆ C

Note that if θ̂ is a smooth point of S then t+S (θ̂) = −t−S (θ̂), but this is not the case if θ̂ is a

kink point. Given t+S (θ̂), t−S (θ̂) an alternative definition of the polar cone to S at θ̂ is:

PCS (θ̂) ≡ {n ∈ R2 | nt+S (θ̂) ≤ 0, nt−S (θ̂) ≤ 0}. (15)

Before presenting the proof of the Proposition, we prove two claims about PCS (θ̂) that

will be used in the proof. Claim 1 states that given a convex set S and a point in the frontier
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θ̂, the closest point in S to any point in the set X ≡ {x = θ̂ + n | n ∈ PCS (θ̂)} is θ̂ itself.

Claim 1: Given a convex set S and a point θ̂ ∈ Fr(S ), then for all x = θ̂ + n where

n ∈ PCS (θ̂), n , 0, we have that,

θ̂ = arg min
θ∈S
|θ − x|

Proof of Claim 1: Consider x = θ̂ + n with n ∈ PCS (θ̂) and any point θ ∈ S . Define by y

the projection of θ − θ̂ on to the line with direction n passing through θ̂. Since n ∈ PCS (θ̂),

n(θ − θ̂) ≤ 0 and hence y and x lie in the same line on opposite sides of θ̂. Therefore by

Pythagoras theorem:

|θ − x|2 = |θ − y|2 + |y − x|2 > |θ − y|2 + |θ̂ − x|2 ≥ |θ̂ − x|2

�

Claim 2: Given a convex set S ⊂ R2 and a point θ̂ ∈ Fr(S ), if b ∈ int(PCS (θ̂)), then there

exists ε > 0 such that for all θ ∈ B(θ̂, ε), θ + b − θ̂ ∈ int(PCS (θ̂)).

Proof of Claim 2: For b ∈ int(PCS (θ̂)), bt+S (θ̂) < 0 and bt−S (θ̂) < 0 by (15). Define

ε = min{−bt+S (θ̂),−bt−S (θ̂)}>0. Consider θ ∈ B(θ̂, ε), then (θ + b − θ̂)t+S (θ̂) = (θ − θ̂)t+S (θ̂) +

bt+S (θ̂) < ε − ε = 0. Analogously, (θ + b − θ̂)t−S (θ̂) < 0 and hence by (15)

θ + b − θ̂ ∈ int(PCS (θ̂)).

�

We start now with the proof of Proposition 7. We first show that both conditions (i) and (ii)

are necessary for collusion-proofness.

CP ⇒ Statements (i): Suppose there exists a θ̂ ∈ F̃r(Y) and tY (θ̂) ∈ TY (θ̂) such that

b1, b2 ∈ C(nOut
Y (θ̂), tY (θ̂)]. Suppose that b2 ∈ C(b1, nOut

Y (θ̂)). The opposite case in which

b1 ∈ C(b2, nOut
Y (θ̂)) is symmetric. Since Y has non-empty interior and b1 ∈ C(nOut

Y (θ̂), tY (θ̂)],

there exists ε1 > 0 such that for all 0 < ε < ε1, θ̂ − εb1 ∈ Y . Moreover, since b2 ∈

C(b1, nOut
Y (θ̂)), b2 = αb1 + βnOut

Y (θ̂) with α > 0, β > 0. Therefore there exists ε2 > 0

such that for all 0 < ε < ε2, b2 − εb1 = (α − ε)b1 + βnY (θ̂) ∈ C(b1, nOut
Y (θ̂)). Define

ε̃ = min{ε1, ε2, 1} and θ = θ̂ − ε̃b1. Since ε̃ ≤ ε1, θ ∈ Y . We now show that at θ the senders

can collude at θ̂.

Denote by S the punishment region if both senders report θ̂, i.e., S is the set of policies that

a sender deviating from the collusive report θ̂ could induce, given that the receiver uses the

Min Rule. Since b2 ∈ C(b1, nOut
Y (θ̂)), for all y ∈ Y such that b1y ≤ b1θ̂,

b2y = (αb1 + βnOut
Y (θ̂))y = αb1y + βnOut

Y (θ̂)y ≤ αb1θ̂ + βnOut
Y (θ̂)θ̂ = b2θ̂

where the last inequality uses the facts that b1y ≤ b1θ̂ and that by the definition of nOut
Y (θ̂),

nOut
Y (θ̂)(y − θ̂) ≤ 0. Therefore the punishment region can be written as S = Y \ H(b1, b1θ̂)

and PCS (θ̂) = C[b1, nOut
Y (θ̂)]. Note that in particular θ ∈ S and hence either sender could
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induce θ if he preferred it to θ̂. Now,

θ + b1 − θ̂ = (1 − ε̃)b1 ∈ PCS (θ̂)

θ + b2 − θ̂ = b2 − ε̃b1 ∈ PCS (θ̂)

hence, by Claim 1, θ̂ is the closest point to both θ + b1 and θ + b2 in S and neither of the

senders would benefit by deviating from θ̂. See Figure 23.

Y

S

nout
Y (θ̂)

tY (θ̂)

θ̂

θ

θ + b1

θ + b2

b1

b2

Figure 23: When b1, b2 ∈ C(nOut
Y (θ̂), tY (θ̂)] we can find a θ ∈ Y such that both senders would like to collude

at θ̂ and neither of the senders have an incentive to deviate from the collusive report.

CP⇒ Statements (ii): Suppose now that there exists θ̂ ∈ Fr(Y) such that b1, b2 ∈ int(PCY (θ̂)).

By Claim 2, there exists εi>0, i ∈ {1, 2}, such that for all θ ∈ B(θ̂, εi), θ+bi− θ̂ ∈ int(PCY (θ̂)).

Define ε = min{ε1, ε2}, since Y has non-empty interior, there exists θ ∈ B(θ̂, ε) ∩ Y with

θ , θ̂. Then θ + b1 − θ̂, θ + b2 − θ̂ ∈ int(PCY (θ̂)) and hence by Claim 1, θ̂ is the closest point

in Y to both θ + b1 and θ + b2. Therefore at θ both senders want to collude to θ̂ and neither

sender has an incentive to deviate from the collusive report.

Y

θ̂

b2b1

θ

θ + b2
θ + b1

PCY (θ̂)

Figure 24: If b1, b2 ∈ PCY (θ̂), we can find θ such that both senders would like to collude at θ̂ and neither
sender has an incentive to deviate from the collusive report.

We prove now the other implication, i.e. that conditions (i) and (ii) are sufficient for

collusion-proofness:

Statements (i) and (ii) ⇒ CP: Suppose that the FRE supported by the Min Rule is not

collusion-proof for some magnitudes of the biases t1 = |b1|, t2 = |b2|. Then there exists
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θ, θ̂ ∈ Y such that:

(a) θ̂ ∈ B̄(θ + b1, |b1|) ∩ B̄(θ + b2, |b2|)

(b) For all θ̃ ∈ Y with b1θ̃ ≤ b1θ̂, and b2θ̃ ≤ b2θ̂, then

θ̃ < B̄(θ + b1, |θ + b1 − θ̂|) ∪ B̄(θ + b2, |θ + b2 − θ̂|)

Condition (a) states that in state θ, both senders prefer the policy θ̂ to θ. Condition (b)

states that in state θ, neither sender can gain by deviating from the collusive report θ̂, given

that the receiver will respond to a deviation using the Min Rule; the receiver’s use of the

Min Rule restricts a deviating sender to inducing only policies θ̃ such that b1θ̃ ≤ b1θ̂, and

b2θ̃ ≤ b2θ̂.

Condition (a) can be rewritten as

θ ∈ Y ∩ B̄(θ̂ − b1, |b1|) ∩ B̄(θ̂ − b2, |b2|)

Note that Y ∩ B̄(θ̂ − b1, |b1|) ∩ B̄(θ̂ − b2, |b2|) ⊂ Y \ (H(b1, b1θ̂) ∪ H(b2, b2θ̂)). Hence,

denoting by n1 and n2 the unit normal vector to b1 and b2 respectively such that n1b2 < 0,

n2b1 < 0, condition (a) implies that θ − θ̂ ∈ C[n1, n2]. In particular

either n1(θ − θ̂) > 0 or n2(θ − θ̂) > 0. (16)

Consider i ∈ {1, 2} such that ni(θ − θ̂) > 0. Then condition (b) implies that for any

0 < ε ≤ ni(θ − θ̂), θ̂ + εni is not feasible; if there were an ε with 0 < ε ≤ ni(θ − θ̂) such

that θ̃ = θ̂ + εni ∈ Y , we would have that biθ̃ = biθ̂, b jθ̃ < b jθ̂ (since nib j < 0) and

|θ + bi − θ̃| < |θ + bi − θ̂|. To see this last inequality, note that θ + bi lies on the orthogonal

line to θ̃ − θ̂ passing through θ. Denote by y the intersection between the line passing by

θ̂ and θ̃ and the orthogonal line passing by θ and θ + bi. The distance between θ̃ and y is

ni(θ − θ̂) − ε, whereas the distance between θ̂ and y is ni(θ − θ̂). By Pythagoras,

|θ + bi − θ̃|
2 = |θ + bi − y|2 + (ni(θ − θ̂) − ε)2 < |θ + bi − y|2 + ni(θ − θ̂)2 = |θ + bi − θ̂|

2.

Therefore sender S i would be able to induce θ̃ given the receiver use of the Min Rule, and

he would gain by deviating from θ̂ to θ̃. See Figure (25).

θ̂

B(θ̂, ε)

y

b2

n2

b1

n1θ

θ + b1

θ̃

Figure 25: If the collusive report θ̂ is in the interior of Y, at least one sender (in this case S 1) has an incentive
to deviate from it.

Hence a necessary condition for θ̂ to be a collusive report given θ is that for any i ∈
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{1, 2}:

if ni(θ − θ̂) > 0 then θ̂ + εni < Y, for any 0 < ε ≤ ni(θ − θ̂) (17)

In other words, the ray departing from θ̂ in the direction of ni cannot be feasible. In partic-

ular, θ̂ has to be in the frontier of Y .

Consider ni(θ − θ̂) > 0, (recall that by (16) we know that there exists such i), then (17)

implies that one and only one of the tangent vectors t+Y (θ̂) and t−Y (θ̂) belongs to C[θ − θ̂, ni).

Denote such tangent vector by ti
Y (θ̂), and the outward41 normal vector to ti

Y (θ̂) by ni
Y (θ̂) (See

Figure 26). Then,

ni ∈ C(ti
Y (θ̂), ni

Y (θ̂)). (18)

θ̂

t1
Y (θ̂)

t2
Y (θ̂)

n1
Y (θ̂)

n2
Y (θ̂)

θ̂

PCY (θ̂)

Y

b2

n2

b1n1

θ

(a) If n1(θ − θ̂) > 0 and n2(θ − θ̂) >
0, then θ̂ is a kink point and b1, b2 ∈

int(PCY (θ̂)).

θ̂

t1
Y (θ̂)

n1
Y (θ̂)

θ̂

C[ti
Y (θ̂), ni

Y (θ̂))

Y

b2

n2

b1n1

θ

(b) If n1(θ − θ̂) > 0 and n2(θ − θ̂) ≤ 0,
then b1, b2 ∈ C[ti

Y (θ̂), ni
Y (θ̂)).

Figure 26

Suppose that n j(θ − θ̂) > 0 for j , i. Then, following the same argument as above, the

ray departing from θ̂ in the direction n j cannot be feasible and θ̂ has to be a kink point (See

Figure 26a). Denoting by t j(θ̂) ∈ {t+Y (θ̂), t−Y (θ̂)} \ ti
Y (θ̂), the remaining tangent vector, it has

to be that t j
Y (θ̂) ∈ C[θ − θ̂, n j), and denoting by n j(θ̂) its normal outward vector, we have

that n j ∈ C(t j
Y (θ̂), n j

Y (θ̂)). This together with (18) implies that b1, b2 ∈ C(ni(θ̂), n j(θ̂)). But

C(ni(θ̂), n j(θ̂)) ≡ int(PCY (θ̂)), hence b1, b2 ∈ int(PCY (θ̂)) which contradicts condition (ii)

of the proposition.

Lastly, suppose that n j(θ − θ̂) ≤ 0 while ni(θ − θ̂) > 0. This together with (18) implies

that

b1, b2 ∈ C(ni
Y (θ̂),−ti

Y (θ̂)]. (19)

If θ̂ is a smooth point then ni
Y (θ̂) = nOut

Y (θ̂) and −ti
Y (θ̂) = tY (θ̂). Hence, condition (i) of

the proposition is violated (See Figure 26b). If θ̂ is a kink point, suppose first that b2 and

−ti
Y (θ̂) are linearly independent, then by moving along the frontier in the direction of ti

Y (θ̂),

there exists a smooth point θ̄ sufficiently close to θ̂ such that tY (θ̄) ∈ C(b2,−ti
Y (θ̂)) and

hence b1, b2 ∈ C(nOut
Y (θ̄), tY (θ̄)] and condition (i) of the proposition is violated. If b2 has

the same direction as −ti
Y (θ̂), then it has to be that n j(θ − θ̂) = 0. Consider θ̄ = θ̂ + εn j for

41By outward we refer to the normal vector to ti
Y (θ̂) that exits from Y .
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0 < ε < |θ̂ − θ|. θ̄ is a smooth point in the frontier and nOut
Y (θ̄) = ni

Y (θ̂), tY (θ̄) = −ti
Y (θ̂).

Hence b1, b2 ∈ C(nOut
Y (θ̄), tY (θ̄)] which contradicts condition (i) of the proposition. �

Proof of Proposition 8:

Throughout the paper, Y is assumed to be closed, but since the projection of a closed set

onto a plane is not necessarily closed, Yb is not necessarily closed. Nevertheless, Propo-

sition 1-(i) holds independently of whether or not the policy space contains its frontier.

Moreover, the condition for robustness (Condition (2) in Proposition 1) is trivially satisfied

for interior points. Consequently, the equivalence between statements (i) and (ii) in Propo-

sition 3 also holds independently of whether or not the policy space contains its frontier. (In

Proposition 3, the assumption that the policy space is closed is relevant only for statement

(iii)).

Given these observations, to prove Proposition 8 it suffices to show that for Y ⊆ Rp, a

FRE that is independent of the magnitudes of the biases exists if and only if, for the two-

dimensional policy space Yb, a FRE that is independent of the magnitudes of the biases

exists, where now the biases are regarded as two-dimensional vectors in Πb.

Given an arbitrary θ ∈ Rp, denote by θb the projection of θ onto the plane Πb and by xb

an arbitrary element of Πb. Define Hb(b, bθb) = {xb ∈ Πb | bxb > bθb}. Then

θ̃ ∈ H(b, bθ)⇐⇒ bθ̃ > bθ ⇐⇒ bθ̃b > bθb ⇐⇒ θ̃b ∈ Hb(b, bθb). (20)

Given Proposition 1-(i), there exists a FRE independent of the magnitudes of the biases

in (Y,Y) if and only if for any θ′, θ′′, Y * H(b1, b1θ
′′)∪H(b2, b2θ

′). By (20) this is equivalent

to the statement that for any θ′b, θ
′′
b ∈ Yb, Yb * Hb(b1, b1θ

′′
b ) ∪ Hb(b2, b2θ

′
b) which, given

Proposition 1-(i), is equivalent to the existence of a FRE independent of the magnitudes of

the biases in (Yb,Yb). �

Proof of Proposition 9:

In order to guide the reader through the proof we have subdivided the argument into several

subsections. To save on notation we denote by FREIMB a FRE that is independent of the

magnitudes of the biases. We define the following two concepts:

Definition 7. The frontier is locally non-convex at θ if for all ε > 0, there exist θ′, θ′′ ∈

B(θ̂, ε) ∩ Fr(Y) such that there exists λ ∈ (0, 1), λθ′ + (1 − λ)θ′′ < Y .

Definition 8. Given biases b1, b2, a point θ ∈ Fr(Y) is bad kink if there exists τ > 0 such

that

Y ∩ B(θ, τ) = (H(b1, b1θ) ∪ H(b2, b2θ)) ∩ B(θ, τ)

In other words, a bad kink point is a kink point at which the frontier is locally non-

convex and such that the frontier is linear on both sides of the kink point with the inward

normal vectors coinciding with the biases. See Figure 27 for an illustration.
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1: GDC+LDC⇒ ∃ Robust FREIMB. For this implication we proceed in three steps. In

Step 1.1 we show that GDC implies condition (1) of Proposition 1 which is equivalent to

the existence of a FREIMB in pure strategies. In Step 1.2 we show that if there are not bad

kinks, LDC implies condition (2) Proposition 1 and therefore together with Step 1.1 they

guarantee the existence of a robust FREIMB in pure strategies (Proposition 1-(iii)). Lastly

in Step 1.3 we show that when both GDC and LDC hold but there are bad kinks we can

construct a robust FREIMB in mixed strategies.

Step 1.1: GDC⇒ Prop 1-(1). We show that GDC implies Proposition 1-(i). Suppose there

exist θ′, θ′′ ∈ Y such that Y ⊆ H(b1, b1θ
′′) ∪ H(b2, b2θ

′). Since Y is compact, consider

θ̃′ ∈ arg min{b2y | y ∈ Y} and θ̃′′ ∈ arg min{b1y | y ∈ Y}. Since b1θ̃
′′ ≤ b1θ

′′ and

b2θ̃
′ ≤ b2θ

′, Y ⊆ H(b1, b1θ̃
′′) ∪ H(b2, b2θ̃

′). In particular b1θ̃
′ > b1θ̃

′′, b2θ̃
′′ > b2θ̃

′ and

x = h(b1, b1θ̃
′′) ∩ h(b2, b2θ̃

′) < Y . Moreover, by the definition of θ̃′, θ̃′′, Y ⊂ H(b1, b1θ̃
′′) ∩

H(b2, b2θ̃
′) and x cannot be written as a convex combination of points in Y (x < co(Y)).

Now choose any point θ̃ ∈ F̃r(co(Y)) such that θ̃ belongs to the triangle formed by x, θ̃′ and

θ̃′′. Then denoting n = nco(Y)(θ̃), we have that n(θ̃′ − θ̃) ≥ 0, n(θ̃′′ − θ̃) ≥ 0, n(x − θ̃) < 0

which implies that n(θ̃′ − x) > 0 and n(θ̃′′ − x) > 0. Using {b1, b2} as a base for R2 we can

write n = αb1 +βb2 and hence αb1(θ̃′− θ̃′′) > 0 and βb2(θ̃′′− θ̃′) > 0 which implies α, β > 0

and therefore n ∈ C(b1, b2) which contradicts the GDC.

Therefore, if GDC holds there exists a FREIMB in pure strategies.

Step 1.2: LDC+ no bad kinks⇒ Prop 1-(2). Suppose that local deviations from θ ∈ Y

cannot be deterred with pure strategies (and hence θ ∈ Fr(Y)). By Step 1 of Proposition 3,

there exists an ε > 0 such that B(θ, ε)∩Y ⊆ H(b1, b1θ)∪H(b2, b2θ). Moreover for all δ > 0,

B(θ, δ) ∩ Y * H(b1, b1θ) ∩ H(b2, b2θ) because if not θ would be locally the worst point for

both senders and a local deviation could be deterred by choosing θ. Since Fr(Y) has a finite

number of kinks and the frontier to the sides of θ is not linear with normal vector in {b1, b2},

there exits either:

θ′ ∈ Fr(Y) ∩ B(θ, ε) ∩ H(b1, b1θ) \ H(b2, b2θ) such that Fr(Y) is differentiable in (θ, θ′)

and b1(θ′ − θ) > 0 and b2(θ′ − θ) < 0, or

θ′′ ∈ Fr(Y)∩B(θ, ε)∩H(b2, b2θ) \H(b1, b1θ) such that Fr(Y) is differentiable in (θ, θ′′)

and b1(θ′′ − θ) > 0 and b2(θ′′ − θ) > 0.

Suppose that we are in the first case (the second case is analogous), then by the mean

value theorem there exists θ̃ ∈ Fr(Y) between θ and θ′ such that nY (θ̃)(θ′ − θ) = 0. Using

b1, b2 as a base of R2, we have that nY (θ̃) = αb1 + βb2 and hence, 0 = nY (θ̃)(θ′ − θ) =

αb1(θ′ − θ) + βb2(θ′ − θ). And since b1(θ′ − θ) > 0 and b2(θ′ − θ) < 0, we have that

both α and β have the same sign. Moreover since nY (θ̃) is the inward normal vector and

B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪ H(b2, b2θ), it has to be that both α, β > 0, and hence nY (θ̃) ∈

C(b1, b2), which contradicts LDC.

Therefore, by Proposition 1-(iii), GDC+LDC+no bad kinks imply that there exists a robust

FREIMB in pure strategies.

Step 1.3: GDC+LDC+bad kinks⇒ ∃ mixed Robust FRE. When the frontier has a bad

kink at θ, local deviations from θ cannot be deterred locally in pure strategies because

B(θ, τ) ∩ (Y \ (H(b1, b1θ) ∪ H(b2, b2θ)) = ∅ (see Figure 27). However, we show below that
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local deviations can be deterred locally if the receiver mixes between two actions.

θ

B(θ, δ̄)

Y

b2

b1

y′

y′′

x′

x′′

B(θ, τ)

x̂

y′+y′′
2

θ′

θ̃′′
θ′′

β

Figure 27: The point θ is a non-convex kink such that the frontier is linear on the two sides of θ, and the
inward normal vectors to the frontier coincide with b1, b2. A local deviation from θ cannot be deterred by a
pure strategy from the receiver. However, the receiver can deter deviations by locally mixing between y′ and
y′′ with equal probability. This can be rationalised by the receiver’s belief allocating equal mass to x′ and x′′,
so that the expected belief is x̂.

We need to define the receiver’s belief given any report (θ′, θ′′) and a best response (that

will involve mixing) given those beliefs that would deter deviations from the senders.

In order to define the receiver’s belief, denote by β half of the outside angle of Fr(Y)

at θ.42 Define δ̄ = τ cos3(β) sin(β). For any θ′, θ′′ ∈ B(θ, δ̄) define x̂(θ′, θ′′) = θ +

b̂ 1
cos2(β) sin(β) max{|θ′ − θ|, |θ′′ − θ|} where b̂ is the unit bisector vector to {−b1,−b2}. Lastly,

define x′(θ′, θ′′), x′′(θ′, θ′′) the points in the frontier that are at a distance |x̂(θ′,θ′′)−θ|
cos(β) to θ.43

Figure 27 illustrates δ̄ and x̂, x′, x′′ for given (θ′, θ′′). The idea is that given θ′, θ′′ ∈ B(θ, δ̄),

the receiver’s belief allocates equal probability to x′(θ′, θ′′), x′′(θ′, θ′′), and hence the ex-

pected belief is x̂(θ′, θ′′), that lies on the bisector line that is equidistant to the two sides of

the frontier. Given such a belief, the receiver is indifferent between the policies y′(θ′, θ′′)

and y′′(θ′, θ′′), the projections of x̂(θ′, θ′′) onto the two sides of the frontier, and can mix

between them.

Formally, we define the receiver’s beliefs as follows. If θ′ ∧b1,b2 θ
′′ ∈ Y the receiver

allocates mass one to θ′ ∧b1,b2 θ
′′. If θ′ ∧b1,b2 θ

′′ < Y but θ′, θ′′ ∈ B(θ, δ̄), the receiver

allocates equal probability to x′(θ′, θ′′), x′′(θ′, θ′′). Finally, in the remaining cases, the

receiver allocates mass one to y ∈ arg miny∈Y b1y ∩ arg miny∈Y b2y (which is non empty

since GDC holds).

Given those beliefs the receiver optimally responds with the mixed strategy:

σR(θ′, θ′′) =


θ′ ∧b1,b2 θ

′′ with prob 1 i f θ′ ∧b1,b2 θ
′′ ∈ Y

y′ with prob 1
2 , y
′′ with prob 1

2 i f θ′ ∧b1,b2 θ
′′ < Y, θ′, θ′′ ∈ B(θ, δ̄)

y with prob 1 otherwise

42The formula for such an angle is given by β = 90◦ − 1
2 cos−1

(
b1b2
|b1 ||b2 |

)
. Note that 0 < β < 90◦ and hence

cos(β) > 0.
43 The definition of δ̄ ensures that the points x′(θ′, θ′′), x′′(θ′, θ′′) belong to Fr(Y) ∩ B(θ, τ).
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In order to prove that this response supports a FRE, note that y is the worst policy for

both senders and hence large deviations are always deterred. Moreover, local deviations can

be deterred locally since for any ε > 0 with ε < τ, there exists δ = ε cos3(β)sin(β) < δ̄, such

that for any θ′, θ′′ ∈ B(θ, δ), either θ′ ∧b1,b2 θ
′′ ∈ Y (and θ′ ∧b1,b2 θ

′′ ∈ B(θ, ε)) or, θ′ ∧b1,b2

θ′′ < Y and the receiver responds by mixing with equal probability between y′(θ′, θ′′) and

y′′(θ′, θ′′). We show now, that such response from the receiver deters deviations from both

senders. For simplicity we drop the arguments of y′ and y′′ below. Sender S 1 has no

incentive to deviate if:

1
2 (y′ − (θ′′ + b1))2 + 1

2 (y′′ − (θ′′ + b1))2 ≥ b2
1

⇔ 1
2 (y′ − θ′′)2 + 1

2 (y′′ − θ′′)2 ≥ 1
2 b1( y′+y′′

2 − θ′′)

But b1( y′+y′′

2 − θ′′) ≤ 0 by construction, and hence this inequality is always satisfied. The

argument for Sender S 2 is symmetric. Moreover it is straightforward to see that such pun-

ishments are robust. We have therefore constucted a Robust FREMIB in mixed strategies.

This concludes part 1 of the proof that shows that GDC and LDC are sufficient for the

existence of a robust FREIMB.

2: ∃ Robust FREIMB⇒ GDC+LDC. For this implication we proceed again in three steps.

In Step 2.1 we show that if the GDC is not satisfied, then it is not possible to construct a

FREIMB (in mixed or pure strategies). In Step 2.2 we show that if there exists a robust

FREIMB in pure strategies then LDC is satisfied. Lastly, in Step 2.3 we show that if the

GDC is satisfied but the LDC fails, then it is not possible to support a robust FREIMB

unless the section of the non-convex part of the frontier where the LDC is violated forms

part of a circumference.

Step 2.1: ∃ FREIMB⇒ GDC. Suppose that the GDC is violated. Since co(Y) is convex,

by Proposition 4 there is not a FREIMB in the environment (Θ, co(Y)). Given that co(Y)

is compact, define Y1 = arg minθ∈co(Y) b1θ and Y2 ∈ arg minθ∈co(Y) b2θ. Since there is not

a FREIMB in co(Y), it has to be the case that Y1 ∩ Y2 = ∅. Moreover, by the definition

of co(Y) it has to be the case that Y i ∩ Y , ∅. Consider θ′ ∈ Y1 ∩ Y and θ′′ ∈ Y2 ∩ Y .

Clearly θ′ , θ′′ and any mixing in Y by the receiver is strictly preferred by at least one of

the senders to either θ′ or θ′′ and hence the receiver cannot deter the deviation {θ′, θ′′} even

if he mixes.

Step 2.2: ∃ Robust FREIMB in pure strategies⇒ LDC. By Proposition 2, if there exists a

robust FREIMB in pure strategies in (Θ,Y), there exists a robust FREIMB in pure strategies

for the environment (Y,Y) and hence Proposition 1-(ii) holds. We show that Proposition 1-

(ii) implies LDC. Suppose there exists θ ∈ F̃r(Y) such that nY (θ) ∈ C(b1, b2). Then for any

δ > 0, both B(θ, δ)∩Y ∩H(bi, biθ) , ∅ and B(θ, δ)∩Y ∩{y ∈ R2 | biy < biθ} , ∅ for i = 1, 2.

Moreover, there exists ε > 0 such that

B(θ, ε) ∩ Y ⊆ H(b1, b1θ) ∪ H(b2, b2θ). (21)
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For any δ > 0 consider θ′ ∈ B(θ, δ) ∩ Y ∩ {x ∈ R2 | b2x < b2θ} and θ′′ ∈ B(θ, δ) ∩ Y ∩ {x ∈

R2 | b1x < b1θ}. Then B(θ, ε) ∩ Y ⊆ H(b1, b1θ
′′) ∪ H(b2, b2θ

′). To see this, consider

θ̃ ∈ B(θ, ε) ∩ Y . By (21), θ̃ ∈ H(b1, b1θ) ∪ H(b2, b2θ). Suppose θ̃ ∈ H(b1, b1θ), then

b1θ̃ ≥ b1θ > b1θ
′′ so θ̃ ∈ H(b2, b2θ

′). Similarly, if θ̃ ∈ H(b2, b2θ), then θ̃ ∈ H(b2, b2θ
′).

Hence θ̃ ∈ H(b1, b1θ
′′) ∪ H(b2, b2θ

′).

Step 2.3: ∃ Robust FREIMB + no circumference ⇒ LDC. Suppose that the GDC is

satisfied but condition the LDC is not (and hence by 2.2 there is not a robust FREIMB

in pure strategies). Consider the point θ ∈ F̃r(Y) such that nIn
Y (θ) ∈ C(b1, b2). If Fr(Y) is

locally convex at θ, and the receiver is constrained to punish locally, it will never be optimal

for her to mix and there is no robust FREIMB.

Suppose that Fr(Y) is locally non-convex at θ. In order to robustly deter deviations from

such a point with mixed strategies there need to exist three sequences {y′n}n∈N, {y
′′
n }n∈N ⊂

Fr(Y) and {x̂n}n∈N ⊂ co(Y) such that:

1. For each n ∈ N, y′n , y′′n and y′n, y
′′
n ∈ arg miny∈Y {|x̂n − y|}.

2. Both {y′n}n∈N and {y′′n }n∈N converge to θ.

The sequence {x̂n}n∈N represents the sequence of expected beliefs for the receiver, and for

each x̂n, there must be at least two distinct policies, y′n and y′′n , in the receiver’s best response

set.

These requirements are very strong since they require Fr(Y) to be tangent to a circle

(centred at x̂n) at both y′n and y′′n for all n ∈ N, i.e., as they converge to θ. Moreover,

these requirements have to be satisfied for all θ ∈ F̃r(Y) for which the LDC is violated, in

particular for a continuum of points. These requirements can be satisfied only if the non-

convex part of the frontier at which the LDC is violated is itself an arc of a circumference.

A policy space with such a frontier is non-generic. �

Proof of Proposition 10:

Statement (i)⇔ Statement (ii): This follows from Proposition 4.

Statement (ii) ⇒ Statement (iii): Consider first the case Θ = Y . We show that if for any

pair of reports (θ′, θ′′) in Y such that θ′ , θ′′, the receiver responds by choosing yR(θ′, θ′′) =

θ′ ∧
{b,b} θ

′′, this response deters both senders from deviating, whatever the realizations of

b1, b2 ∈ C[b, b], and therefore the truthful strategies (s1, s2) together with yR constitute a

robust FRE.

Since b1, b2 ∈ C[b, b], there exist α1, α2, β1, β2 ≥ 0 such that, bi = αib + βib, for i = 1, 2.

Then we have

b1(θ′ ∧
{b,b} θ

′′) = (α1b + β1b)(θ′ ∧
{b,b} θ

′′) = α1b(θ′ ∧
{b,b} θ

′′) + β1b(θ′ ∧
{b,b} θ

′′)

= α1 min{bθ′, bθ′′} + β1 min{bθ′, bθ′′}

= min{b1θ
′, b1θ

′′, α1bθ′ + β1bθ′′, α1bθ′′ + β1bθ′}

≤ min{b1θ
′, b1θ

′′}

(22)
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Analogously, b2(θ′ ∧
{b,b} θ

′′) ≤ min{b2θ
′, b2θ

′′}. Therefore, when the realized biases are

(b1, b2), the strategy yR(θ′, θ′′) = θ′ ∧
{b,b} θ

′′ deters S 1 in state θ′′ from reporting θ′ and S 2

in state θ′ from reporting θ′′. (Since the rule yR(θ′, θ′′) = θ′ ∧
{b,b} θ

′′ is anonymous with

respect to the senders, it also deters them, when the biases are (b1, b2), from generating

the incompatible pair (θ′′, θ′).) Note that whenever θ′, θ′′ converge to θ, θ′ ∧
{b,b} θ

′′ also

converges to θ, and hence θ′∧
{b,b}θ

′′ deters local deviations with local actions. Furthermore,

observe that the inequality (22) and the analogous inequality for b2 hold for any b1, b2 ∈

C[b, b] independently of whether those values of the biases belong to the support of the

conditional distribution of the biases given the realization of the state.

Consider now Y ( Θ, and for any θ ∈ Θ define s̃i(θ) = y∗(θ). We show that for any

realization of the biases (b1, b2), (s̃1, s̃2, yR) is a robust FRE in (Θ,Y) for arbitrarily large

biases.

Given y′, y′′ ∈ Y denote by x = yR(y′, y′′) = y′ ∧
{b,b} y′′. For sender S 1 we need to show

that for any θ ∈ Θ such that y∗(θ) = y′′, |θ + tb1 − y′′| ≤ |θ + tb1 − x| for all t > 0 and

for all b1 ∈ C[b, b]. Consider any such θ ∈ Θ with y∗(θ) = y′′, that is, y′′ is the closest

point in Y to θ. In particular |θ − y′′| ≤ |θ − x|. Define z as the midpoint of the segment

[x, y′′]. Then θ(y′′ − x) ≥ z(y′′ − x), and by (22), (θ + tb1)(y′′ − x) ≥ z(y′′ − x) for all t > 0

and all b1 ∈ C[b, b], or in other words |θ + tb1 − y′′| ≤ |θ + tb1 − x| for all t > 0 and all

b1 ∈ C[b, b]. A similar argument for S 2 shows that for any θ ∈ Θ such that y∗(θ) = y′,

|θ + tb2 − y′| ≤ |θ + tb2 − x| for all t > 0 and all b2 ∈ C[b, b]. Therefore (s̃1, s̃2, yR) is a FRE

in (Θ,Y).

Statement (iii)⇒ Statement (i): Given Y, if for Θ ) Y there exists a robust FRE then for

Θ = Y there exists a robust FRE. Given that for all θ ∈ Y , the realization of biases (b, b) has

positive probability, then Proposition 4 implies that condition (i) must hold. �

Equivalence of Robustness and Continuity on the Diagonal

As mentioned in the introduction, Ambrus and Takahashi (2008) define the following no-

tion of continuity for the receiver’s strategy, for the case in which Y = Θ:

Definition 9 (Ambrus and Takahashi (2008)). An equilibrium (s1, s2, y) is continuous on

the diagonal if

lim
n→∞

y(s1(θn
1), s2(θn

2)) = y(s1(θ), s2(θ))

for any sequence {(θn
1, θ

n
2)}n∈N of pairs of states such that limn→∞ θ

n
1 = limn→∞ θ

n
2 = θ.

In this paper, we allow for the possibility that the policy space might be a strict subset

of the state space. Below we extend the definition of continuity on the diagonal to the case

Y ⊆ Θ. For simplicity, we state the definition for fully revealing equilibria.

Definition 10. A fully revealing equilibrium (s1, s2, y) is continuous on the diagonal if

lim
n→∞

y(s1(θn
1), s2(θn

2)) = y∗(θ)

53



for any sequence {(θn
1, θ

n
2)}n∈N of pairs of states such that limn→∞ y∗(θn

1) = limn→∞ y∗(θn
2) =

y∗(θ).

We now show that this notion of continuity is equivalent to our definition of robustness.

Lemma 2. A fully revealing equilibrium (s1, s2, y) is robust if and only if it is continuous

on the diagonal.

Proof. ⇒) Consider any pair of sequences {(θn
1, θ

n
2)}n∈N ⊂ Θ such that limn→∞ y∗(θn

1) =

limn→∞ y∗(θn
2) = y∗(θ). Since µ deters local deviations with local actions, for every ε > 0

there exists a δ > 0 such that for all y∗(θ′), y∗(θ′′) ∈ B(y∗(θ), δ) ∩ Y , y(s1(θ′), s2(θ′′)) ∈

B(y∗(θ), ε). Now, limn→∞ y∗(θn
1) = limn→∞ y∗(θn

2) = y∗(θ) implies that for that δ > 0, there

exists n0 ∈ N such that for all n ≥ n0, y∗(θn
1), y∗(θn

2) ∈ B(y∗(θ), δ) ∩ Y , which implies that

y(s1(θn
1), s2(θn

2)) ∈ B(y∗(θ), ε) and hence the equilibrium is continuous on the diagonal.

⇐) We argue by contradiction. Suppose that µ does not deter local deviations with local

actions. Then there exists θ ∈ Θ and ε > 0 such that for all n ∈ N there exists θn
1, θn

2 such

that y∗(θn
1), y∗(θn

2) ∈ B(y∗(θ), 1
n ) ∩ Y with

y(s1(θn
1), s2(θn

2)) < B(y∗(θ), ε) \
(
B(θn

1 + b2, |b2|) ∪ B(θn
2 + b1, |b1|)

)
.

Note that for any n such that 1
n < ε, θn

1 , θn
2, because if θn

1 = θn
2, y(s1(θn

1), s2(θn
2)) =

y∗(θn
1) ∈ B(y∗(θ), ε) \

(
B(θn

1 + b2, |b2|) ∪ B(θn
2 + b1, |b1|)

)
. Since (s1, s2, y) is an equilibrium,

y(s1(θn
1), s2(θn

2)) < B(θn
1 + b2, |b2|) ∪ B(θn

2 + b1, |b1|), otherwise either sender 1 would have

an incentive to deviate to s1(θn
1) when θn

2 is realized, or sender 2 would have an incentive to

deviate to s2(θn
2) when θn

1 is realized. Hence y(s1(θn
1), s2(θn

2)) < B(θ, ε), which contradicts

the diagonal continuity of the equilibrium. �
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